Safetensors
English
llama
emrecanacikgoz commited on
Commit
8c8ed27
Β·
verified Β·
1 Parent(s): b294972

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -1
README.md CHANGED
@@ -6,4 +6,102 @@ metrics:
6
  - accuracy
7
  base_model:
8
  - meta-llama/Llama-3.1-8B-Instruct
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - accuracy
7
  base_model:
8
  - meta-llama/Llama-3.1-8B-Instruct
9
+ ---
10
+
11
+
12
+ # CALM-8B: Conversational Agentic Language Model
13
+
14
+ ## Model Description
15
+ **CALM-8B** is the smallest open-source model of **CALM** (Conversational Agentic Language Model) series, designed to integrate both **Task-Oriented Dialogue (TOD) capabilities** and **Language Agent (LA) functionalities** into a unified system. By fine-tuning on **CALM-IT**, a novel dataset that interleaves multi-turn ReAct-based reasoning with complex API usage, CALM-8B achieves promising results on TOD and function-calling benchmarks.
16
+
17
+ CALM-8B is trained on a **multi-task dataset** covering dialogue state tracking, function calling, and multi-turn reasoning. The model outperforms top proprietary and domain-specific models, including **GPT-4o**, on key evaluation benchmarks: **MultiWOZ 2.4 (TOD), BFCL V3 (LA), and API-Bank (LA).**
18
+
19
+ ## Model Sources [optional]
20
+
21
+ <!-- Provide the basic links for the model. -->
22
+
23
+ - **Paper [optional]:** [More Information Needed]
24
+ - **Repository:** [More Information Needed]
25
+
26
+
27
+ ---
28
+ ## Model Details
29
+
30
+ - **Model Name:** CALM-8B
31
+ - **Developed by:** Colloboration of UIUC Conversational AI LAB and Oumi
32
+ - **License:** Apache 2.0
33
+ - **Architecture:** Fine-tuned **Llama 3.1 8B Instruct**
34
+ - **Training Data:** CALM-IT dataset
35
+ - **Fine-tuning Framework:** Oumi
36
+ - **Training Hardware:** 8 NVIDIA H100 GPUs
37
+ - **Training Duration:** ~8 hours
38
+ - **Evaluation Benchmarks:** MultiWOZ 2.4, BFCL V3, API-Bank
39
+ - **Release Date:** February 5, 2025
40
+
41
+ ---
42
+ ## Capabilities and Features
43
+
44
+ ### πŸ—£ Conversational Agentic Abilities
45
+ - **Multi-turn Dialogue Mastery:** Maintains coherent conversations across multiple turns with accurate state tracking.
46
+ - **Function Calling and API Integration:** Dynamically selects and calls APIs for task execution.
47
+ - **ReAct-based Reasoning:** Utilizes a structured reasoning process (User-Thought-Action-Observation-Thought-Response).
48
+ - **Zero-Shot Generalization:** Excels in previously unseen function-calling tasks.
49
+
50
+ ### πŸš€ Benchmark Performance
51
+ - **MultiWOZ 2.4 (TOD):** Excels in dialogue state tracking and task completion.
52
+ - **BFCL V3 (LA):** Demonstrates superior function-calling abilities over language agents.
53
+ - **API-Bank (LA):** Accurately generates API calls and integrates responses into conversation flow.
54
+
55
+ ---
56
+ ## Training Process
57
+ ### πŸ”§ Fine-tuning Stages
58
+ 1. **TOD Fine-tuning:** Optimized for dialogue state tracking (e.g., augmented SNIPS reformatted in Alpaca-style instruction tuning).
59
+ 2. **Function Calling Fine-tuning:** Trained to select and generate well-formed API calls from LA datasets.
60
+ 3. **ReAct-based Fine-tuning:** Addresses multi-turn conversations with API integration using a structured reasoning framework.
61
+
62
+ ### πŸ” Training Hyperparameters
63
+ - **Base Model:** Llama 3.1 8B Instruct
64
+ - **LoRA Config:** Rank = 16, Scaling Factor = 32
65
+ - **Batch Size:** 8
66
+ - **Learning Rate:** 1e-4
67
+ - **Optimizer:** AdamW (betas = 0.9, 0.999, epsilon = 1e-8)
68
+ - **Precision:** Mixed precision (bfloat16)
69
+ - **Warm-up Steps:** 0.1 ratio of total steps
70
+ - **Gradient Accumulation Steps:** 1
71
+
72
+ ---
73
+ ## Usage
74
+ ### πŸ— How to Load the Model
75
+ ```python
76
+ from transformers import AutoModelForCausalLM, AutoTokenizer
77
+
78
+ tokenizer = AutoTokenizer.from_pretrained("uiuc-convai/CALM-8B")
79
+ model = AutoModelForCausalLM.from_pretrained("uiuc-convai/CALM-8B")
80
+ ```
81
+
82
+ <!-- TODO -->
83
+ ### πŸ›  Example Inference
84
+ ```python
85
+ TODO
86
+ ```
87
+
88
+ ---
89
+ - **Task-Specific Calibration:** While CALM-8B generalizes well across tasks, performance can improve with domain-specific fine-tuning.
90
+ - **Scalability to Larger Models:** Future iterations (CALM-70B, CALM-405B) extend capabilities to larger-scale agentic conversations.
91
+ - **Open-Source Expansion:** All datasets, training scripts, and model checkpoints are publicly available to foster further research.
92
+
93
+ <!-- TODO -->
94
+ ---
95
+ ## Citation
96
+ If you use **CALM-8B** in your research, please cite:
97
+ ```
98
+ @article{yourpaper2024,
99
+ title={CALM: Conversational Agentic Language Model},
100
+ author={Your Name and Collaborators},
101
+ journal={Your Conference/Journal},
102
+ year={2025}
103
+ }
104
+ ```
105
+
106
+ For more details, visit [Project Repository](https://github.com/your-repo) or contact **[email protected]**.
107
+