File size: 4,956 Bytes
b294972 e514e5d b294972 8c8ed27 e514e5d 8c8ed27 b2cddf8 8c8ed27 8a9caae 8c8ed27 8a9caae 8c8ed27 1053d58 e514e5d a0c5835 e514e5d 8c8ed27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
license: cc-by-nc-4.0
language:
- en
metrics:
- accuracy
base_model:
- meta-llama/Llama-3.1-8B-Instruct
---
# CALM-8B: Conversational Agentic Language Model
## Model Description
**CALM-8B** is the smallest open-source model of **CALM** (Conversational Agentic Language Model) series, designed to integrate both **Task-Oriented Dialogue (TOD) capabilities** and **Language Agent (LA) functionalities** into a unified system. By fine-tuning on **CALM-IT**, a novel dataset that interleaves multi-turn ReAct-based reasoning with complex API usage, CALM-8B achieves promising results on TOD and function-calling benchmarks.
CALM-8B is trained on a **multi-task dataset** covering dialogue state tracking, function calling, and multi-turn reasoning. The model outperforms top proprietary and domain-specific models, including **GPT-4o**, on key evaluation benchmarks: **MultiWOZ 2.4 (TOD), BFCL V3 (LA), and API-Bank (LA).**
## Model Sources [TODO]
<!-- Provide the basic links for the model. -->
- **Paper [optional]:** [More Information Needed]
- **Repository:** [More Information Needed]
---
## Model Details
- **Model Name:** CALM-8B
- **Developed by:** Colloboration of UIUC Conversational AI LAB and Oumi
- **License:** Apache 2.0
- **Architecture:** Fine-tuned **Llama 3.1 8B Instruct**
- **Training Data:** CALM-IT dataset
- **Fine-tuning Framework:** [Oumi](https://github.com/oumi-ai/oumi)
- **Training Hardware:** 8 NVIDIA H100 GPUs
- **Training Duration:** ~8 hours
- **Evaluation Benchmarks:** MultiWOZ 2.4, BFCL V3, API-Bank
- **Release Date:** February 5, 2025
---
## Capabilities and Features
### π£ Conversational Agentic Abilities
- **Multi-turn Dialogue Mastery:** Maintains coherent conversations across multiple turns with accurate state tracking.
- **Function Calling and API Integration:** Dynamically selects and calls APIs for task execution.
- **ReAct-based Reasoning:** Utilizes a structured reasoning process (User-Thought-Action-Observation-Thought-Response).
- **Zero-Shot Generalization:** Excels in previously unseen function-calling tasks.
### π Benchmark Performance
- **MultiWOZ 2.4 (TOD):** Excels in dialogue state tracking and task completion.
- **BFCL V3 (LA):** Demonstrates superior function-calling abilities over language agents.
- **API-Bank (LA):** Accurately generates API calls and integrates responses into conversation flow.
---
## Training Process
### π§ Fine-tuning Stages
1. **TOD Fine-tuning:** Optimized for dialogue state tracking (e.g., augmented SNIPS reformatted in Alpaca-style instruction tuning).
2. **Function Calling Fine-tuning:** Trained to select and generate well-formed API calls from LA datasets.
3. **ReAct-based Fine-tuning:** Addresses multi-turn conversations with API integration using a structured reasoning framework.
### π Training Hyperparameters
- **Base Model:** Llama 3.1 8B Instruct
- **LoRA Config:** Rank = 16, Scaling Factor = 32
- **Batch Size:** 8
- **Learning Rate:** 1e-4
- **Optimizer:** AdamW (betas = 0.9, 0.999, epsilon = 1e-8)
- **Precision:** Mixed precision (bfloat16)
- **Warm-up Steps:** 0.1 ratio of total steps
- **Gradient Accumulation Steps:** 1
---
## Usage
### π How to Load the Model using Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("uiuc-convai/CALM-8B")
model = AutoModelForCausalLM.from_pretrained("uiuc-convai/CALM-8B")
```
### π Example Oumi Inference
```bash
pip install oumi
# See oumi_infer.yaml in this model's /oumi/ directory.
oumi infer -i -c ./oumi_infer.yaml
```
### π Example Oumi Fine-Tuning
```bash
pip install oumi
# See oumi_train.yaml in this model's /oumi/ directory.
oumi train -c ./oumi_train.yaml
```
---
- **Task-Specific Calibration:** While CALM-8B generalizes well across tasks, performance can improve with domain-specific fine-tuning.
- **Scalability to Larger Models:** Future iterations (CALM-70B, CALM-405B) extend capabilities to larger-scale agentic conversations.
- **Open-Source Expansion:** All datasets, training scripts, and model checkpoints are publicly available to foster further research.
## Acknowledgements
We'd like to thank the [Oumi AI Team](https://github.com/oumi-ai/oumi) for collaborating on training the models, as well as [Together AI](https://www.together.ai/) for providing the compute resources necessary to train CALM 405B.
## License
This model is licensed under [Creative Commons NonCommercial (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/legalcode).
<!-- TODO -->
---
## Citation
If you use **CALM-8B** in your research, please cite:
```
@article{yourpaper2024,
title={CALM: Conversational Agentic Language Model},
author={Your Name and Collaborators},
journal={Your Conference/Journal},
year={2025}
}
```
For more details, visit [Project Repository](https://github.com/your-repo) or contact **[email protected]**.
|