rtdetr-v2-r50-cardamage-40ep
This model is a fine-tuned version of PekingU/rtdetr_r50vd on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 12.7731
- eval_model_preparation_time: 0.0097
- eval_map: 0.2093
- eval_map_50: 0.404
- eval_map_75: 0.1925
- eval_map_small: 0.0168
- eval_map_medium: 0.0853
- eval_map_large: 0.2916
- eval_mar_1: 0.3526
- eval_mar_10: 0.4898
- eval_mar_100: 0.5314
- eval_mar_small: 0.0167
- eval_mar_medium: 0.2585
- eval_mar_large: 0.6342
- eval_map_car-parts: -1.0
- eval_mar_100_car-parts: -1.0
- eval_map_Bonet: 0.1129
- eval_mar_100_Bonet: 0.3364
- eval_map_Bumper: 0.128
- eval_mar_100_Bumper: 0.4396
- eval_map_Door: 0.1729
- eval_mar_100_Door: 0.6609
- eval_map_Headlight: 0.1512
- eval_mar_100_Headlight: 0.4947
- eval_map_Mirror: 0.2436
- eval_mar_100_Mirror: 0.5529
- eval_map_Tailight: 0.345
- eval_mar_100_Tailight: 0.575
- eval_map_Windshield: 0.3114
- eval_mar_100_Windshield: 0.66
- eval_runtime: 10.9627
- eval_samples_per_second: 14.048
- eval_steps_per_second: 1.824
- step: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 40
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 58
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for tumul31/rtdetr-v2-r50-cardamage-40ep
Base model
PekingU/rtdetr_r50vd