whisper-small-uz / README.md
tukhtashevshohruh's picture
Update README.md
1e80097 verified
metadata
library_name: transformers
language:
  - uz
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: 'Whisper-small-uz-V2 '
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: uz
          split: None
          args: 'config: uz, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 23.16938470534728

Whisper-small-uz-V2

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2628
  • Wer: 23.1694

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4646 0.6720 1000 0.3688 32.9186
0.268 1.3441 2000 0.2925 26.4408
0.1436 2.0161 3000 0.2646 23.4813
0.1436 2.6882 4000 0.2628 23.1694

Using the Model

Use the model from the Hugging Face platform, you can use the following code:

from transformers import pipeline

# Load the model
pipe = pipeline("automatic-speech-recognition", model="tukhtashevshohruh/whisper-small-uz")

# Convert the audio file to text
audio_file = "my_audio.wav"  # Replace with the name of your own file
text = pipe(audio_file)

# Print the result
print("Text:", text['text'])

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.2
  • Tokenizers 0.21.0