ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v2-moe on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v2-moe
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tsss1/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
'against six federal agencies pursuant to the Freedom of Information Act (“FOIA”), 5 U.S.C. \n§ 552, claiming that the defendant agencies have violated the FOIA in numerous ways.1 NSC’s \nclaims run the gamut, including challenges to: the withholding of specific information; the \nadequacy of the agencies’ search efforts; the refusal to process FOIA requests; the refusal to',
'How many federal agencies is the action against?',
'Which case was quoted in Entertainment Ltd. v. U.S. Dep’t of Interior regarding the retroactivity of statutes?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.5533 | 0.5502 | 0.524 | 0.4621 | 0.3277 |
cosine_accuracy@3 | 0.6105 | 0.5997 | 0.5703 | 0.5209 | 0.3864 |
cosine_accuracy@5 | 0.7125 | 0.7002 | 0.6754 | 0.609 | 0.4791 |
cosine_accuracy@10 | 0.8083 | 0.7898 | 0.7682 | 0.6862 | 0.5641 |
cosine_precision@1 | 0.5533 | 0.5502 | 0.524 | 0.4621 | 0.3277 |
cosine_precision@3 | 0.5276 | 0.5219 | 0.4951 | 0.4456 | 0.322 |
cosine_precision@5 | 0.4127 | 0.4046 | 0.3889 | 0.3536 | 0.2677 |
cosine_precision@10 | 0.2502 | 0.243 | 0.2391 | 0.213 | 0.1692 |
cosine_recall@1 | 0.1985 | 0.1989 | 0.1883 | 0.1656 | 0.1172 |
cosine_recall@3 | 0.5175 | 0.5138 | 0.4858 | 0.4364 | 0.3215 |
cosine_recall@5 | 0.6555 | 0.6434 | 0.6172 | 0.5608 | 0.4338 |
cosine_recall@10 | 0.7895 | 0.7696 | 0.7508 | 0.6692 | 0.5402 |
cosine_ndcg@10 | 0.6787 | 0.6665 | 0.6436 | 0.5742 | 0.4412 |
cosine_mrr@10 | 0.6103 | 0.6034 | 0.5769 | 0.5144 | 0.3815 |
cosine_map@100 | 0.6544 | 0.6473 | 0.6222 | 0.5623 | 0.4319 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 29 tokens
- mean: 94.33 tokens
- max: 156 tokens
- min: 8 tokens
- mean: 18.25 tokens
- max: 35 tokens
- Samples:
positive anchor aspect” of “substantial independent authority.” Dong v. Smithsonian Inst., 125 F.3d 877, 881
4 See CREW v. Office of Admin., 566 F.3d 219, 220 (D.C. Cir. 2009); Armstrong v. Exec. Office
of the President, 90 F.3d 553, 558 (D.C. Cir. 1996); Sweetland v. Walters, 60 F.3d 852, 854What court circuit is mentioned in connection with the case Sweetland v. Walters?
the entire list of remaining PQPs shifts up one position.
Once GSA has verified, through the evaluation and validation process, the point totals
claimed by the 100/80/70 highest-scoring offerors, GSA will cease evaluations and award IDIQ
contracts to the successful, verified bidders. AR at 1114, 2154, 2645. If, after the evaluationWhat is the GSA responsible for verifying?
Department components], to assist with the processing of [FOIA or Privacy Act] requests for
purposes of administrative expediency and efficiency.” Third Walter Decl. ¶ 3. Indeed, the
State Department’s declarant explains that these five State Department components, including
DS, “conduct their own FOIA/Privacy Act reviews and respond directly to requesters,” despiteWhat is the identified purpose for assisting with processing FOIA or Privacy Act requests?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 4per_device_eval_batch_size
: 2gradient_accumulation_steps
: 4learning_rate
: 2e-05num_train_epochs
: 2lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 2per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.0549 | 10 | 2.6704 | - | - | - | - | - |
0.1099 | 20 | 1.7246 | - | - | - | - | - |
0.1648 | 30 | 1.3634 | - | - | - | - | - |
0.2198 | 40 | 1.0962 | - | - | - | - | - |
0.2747 | 50 | 0.8985 | - | - | - | - | - |
0.3297 | 60 | 0.8667 | - | - | - | - | - |
0.3846 | 70 | 0.7371 | - | - | - | - | - |
0.4396 | 80 | 1.038 | - | - | - | - | - |
0.4945 | 90 | 0.733 | - | - | - | - | - |
0.5495 | 100 | 0.9032 | - | - | - | - | - |
0.6044 | 110 | 0.7283 | - | - | - | - | - |
0.6593 | 120 | 0.6085 | - | - | - | - | - |
0.7143 | 130 | 0.5774 | - | - | - | - | - |
0.7692 | 140 | 0.6164 | - | - | - | - | - |
0.8242 | 150 | 0.8098 | - | - | - | - | - |
0.8791 | 160 | 0.6534 | - | - | - | - | - |
0.9341 | 170 | 0.6035 | - | - | - | - | - |
0.9890 | 180 | 0.5209 | - | - | - | - | - |
1.0 | 182 | - | 0.6911 | 0.6719 | 0.6341 | 0.5600 | 0.4203 |
1.0440 | 190 | 0.3718 | - | - | - | - | - |
1.0989 | 200 | 0.2309 | - | - | - | - | - |
1.1538 | 210 | 0.2128 | - | - | - | - | - |
1.2088 | 220 | 0.138 | - | - | - | - | - |
1.2637 | 230 | 0.1129 | - | - | - | - | - |
1.3187 | 240 | 0.0889 | - | - | - | - | - |
1.3736 | 250 | 0.0607 | - | - | - | - | - |
1.4286 | 260 | 0.1156 | - | - | - | - | - |
1.4835 | 270 | 0.0826 | - | - | - | - | - |
1.5385 | 280 | 0.098 | - | - | - | - | - |
1.5934 | 290 | 0.0891 | - | - | - | - | - |
1.6484 | 300 | 0.0451 | - | - | - | - | - |
1.7033 | 310 | 0.0581 | - | - | - | - | - |
1.7582 | 320 | 0.0722 | - | - | - | - | - |
1.8132 | 330 | 0.0785 | - | - | - | - | - |
1.8681 | 340 | 0.1407 | - | - | - | - | - |
1.9231 | 350 | 0.1022 | - | - | - | - | - |
1.9780 | 360 | 0.0771 | - | - | - | - | - |
2.0 | 364 | - | 0.6787 | 0.6665 | 0.6436 | 0.5742 | 0.4412 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.3.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 36
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for tsss1/modernbert-embed-base-legal-matryoshka-2
Base model
FacebookAI/xlm-roberta-base
Finetuned
nomic-ai/nomic-xlm-2048
Finetuned
nomic-ai/nomic-embed-text-v2-moe
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.553
- Cosine Accuracy@3 on dim 768self-reported0.611
- Cosine Accuracy@5 on dim 768self-reported0.713
- Cosine Accuracy@10 on dim 768self-reported0.808
- Cosine Precision@1 on dim 768self-reported0.553
- Cosine Precision@3 on dim 768self-reported0.528
- Cosine Precision@5 on dim 768self-reported0.413
- Cosine Precision@10 on dim 768self-reported0.250
- Cosine Recall@1 on dim 768self-reported0.198
- Cosine Recall@3 on dim 768self-reported0.518