|
--- |
|
tags: |
|
- image-classification |
|
- timm |
|
- transformers |
|
library_name: timm |
|
license: apache-2.0 |
|
datasets: |
|
- imagenet-1k |
|
- unknown-6m |
|
--- |
|
# Model card for nextvit_small.bd_ssld_6m_in1k |
|
|
|
A Next-ViT image classification model. Trained by paper authors on an unknown 6M sample dataset and ImageNet-1k using SSLD distillation. |
|
|
|
|
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 31.8 |
|
- GMACs: 5.8 |
|
- Activations (M): 17.6 |
|
- Image size: 224 x 224 |
|
- **Pretrain Dataset:** Unknown-6M |
|
- **Dataset:** ImageNet-1k |
|
- **Papers:** |
|
- Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios: https://arxiv.org/abs/2207.05501 |
|
- **Original:** https://github.com/bytedance/Next-ViT |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model('nextvit_small.bd_ssld_6m_in1k', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Feature Map Extraction |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'nextvit_small.bd_ssld_6m_in1k', |
|
pretrained=True, |
|
features_only=True, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
for o in output: |
|
# print shape of each feature map in output |
|
# e.g.: |
|
# torch.Size([1, 96, 56, 56]) |
|
# torch.Size([1, 256, 28, 28]) |
|
# torch.Size([1, 512, 14, 14]) |
|
# torch.Size([1, 1024, 7, 7]) |
|
|
|
print(o.shape) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'nextvit_small.bd_ssld_6m_in1k', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled, a (1, 1024, 7, 7) shaped tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is a (1, num_features) shaped tensor |
|
``` |
|
|
|
## Model Comparison |
|
### By Top-1 |
|
|
|
|model |top1 |top1_err|top5 |top5_err|param_count| |
|
|---------------------------------|------|--------|------|--------|-----------| |
|
|nextvit_large.bd_ssld_6m_in1k_384|86.542|13.458 |98.142|1.858 |57.87 | |
|
|nextvit_base.bd_ssld_6m_in1k_384 |86.352|13.648 |98.04 |1.96 |44.82 | |
|
|nextvit_small.bd_ssld_6m_in1k_384|85.964|14.036 |97.908|2.092 |31.76 | |
|
|nextvit_large.bd_ssld_6m_in1k |85.48 |14.52 |97.696|2.304 |57.87 | |
|
|nextvit_base.bd_ssld_6m_in1k |85.186|14.814 |97.59 |2.41 |44.82 | |
|
|nextvit_large.bd_in1k_384 |84.924|15.076 |97.294|2.706 |57.87 | |
|
|nextvit_small.bd_ssld_6m_in1k |84.862|15.138 |97.382|2.618 |31.76 | |
|
|nextvit_base.bd_in1k_384 |84.706|15.294 |97.224|2.776 |44.82 | |
|
|nextvit_small.bd_in1k_384 |84.022|15.978 |96.99 |3.01 |31.76 | |
|
|nextvit_large.bd_in1k |83.626|16.374 |96.694|3.306 |57.87 | |
|
|nextvit_base.bd_in1k |83.472|16.528 |96.656|3.344 |44.82 | |
|
|nextvit_small.bd_in1k |82.61 |17.39 |96.226|3.774 |31.76 | |
|
|
|
## Citation |
|
```bibtex |
|
@article{li2022next, |
|
title={Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios}, |
|
author={Li, Jiashi and Xia, Xin and Li, Wei and Li, Huixia and Wang, Xing and Xiao, Xuefeng and Wang, Rui and Zheng, Min and Pan, Xin}, |
|
journal={arXiv preprint arXiv:2207.05501}, |
|
year={2022} |
|
} |
|
``` |
|
|