|
|
--- |
|
|
library_name: transformers |
|
|
license: apache-2.0 |
|
|
base_model: Qwen/Qwen3-0.6B-Base |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- timarni/reasoning_SFT |
|
|
model-index: |
|
|
- name: outputs/qwen3_reasoning_sft |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
|
<details><summary>See axolotl config</summary> |
|
|
|
|
|
axolotl version: `0.9.2` |
|
|
```yaml |
|
|
base_model: Qwen/Qwen3-0.6B-Base |
|
|
# Automatically upload checkpoint and final model to HF |
|
|
# hub_model_id: username/custom_model_name |
|
|
|
|
|
plugins: |
|
|
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin |
|
|
strict: false |
|
|
|
|
|
chat_template: qwen3 |
|
|
datasets: |
|
|
- path: timarni/reasoning_SFT |
|
|
type: chat_template |
|
|
split: train |
|
|
field_messages: conversations |
|
|
# message_property_mappings: |
|
|
# role: from |
|
|
# content: value |
|
|
|
|
|
val_set_size: 0.1 |
|
|
|
|
|
output_dir: ./outputs/qwen3_reasoning_sft |
|
|
dataset_prepared_path: last_run_prepared |
|
|
|
|
|
# To be sure that no LORA is done |
|
|
adapter: null |
|
|
lora: false |
|
|
merge_lora: false |
|
|
|
|
|
sequence_len: 4096 #2048 |
|
|
sample_packing: true |
|
|
eval_sample_packing: true |
|
|
pad_to_sequence_len: true |
|
|
|
|
|
wandb_project: mnlp_project |
|
|
wandb_entity: tim-arni |
|
|
wandb_watch: |
|
|
wandb_name: qwen3_reasoning_sft |
|
|
wandb_log_model: |
|
|
|
|
|
gradient_accumulation_steps: 2 # 16 following https://unsloth.ai/blog/qwen3 |
|
|
micro_batch_size: 1 # 2 |
|
|
num_epochs: 6 |
|
|
optimizer: adamw_torch |
|
|
lr_scheduler: cosine |
|
|
learning_rate: 0.00005 # 0.0002 |
|
|
cosine_min_lr_ratio: 0.1 |
|
|
|
|
|
bf16: auto |
|
|
tf32: true |
|
|
|
|
|
gradient_checkpointing: offload |
|
|
logging_steps: 1 |
|
|
gradient_clipping: 1.0 |
|
|
flash_attention: true |
|
|
|
|
|
warmup_ratio: 0.03 |
|
|
evals_per_epoch: 4 |
|
|
saves_per_epoch: 2 |
|
|
save_total_limit: 25 |
|
|
weight_decay: 1e-4 |
|
|
special_tokens: |
|
|
|
|
|
``` |
|
|
|
|
|
</details><br> |
|
|
|
|
|
# outputs/qwen3_reasoning_sft |
|
|
|
|
|
This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on the timarni/reasoning_SFT dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.8020 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 5e-05 |
|
|
- train_batch_size: 1 |
|
|
- eval_batch_size: 1 |
|
|
- seed: 42 |
|
|
- distributed_type: multi-GPU |
|
|
- num_devices: 4 |
|
|
- gradient_accumulation_steps: 2 |
|
|
- total_train_batch_size: 8 |
|
|
- total_eval_batch_size: 4 |
|
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: cosine |
|
|
- lr_scheduler_warmup_steps: 47 |
|
|
- num_epochs: 6.0 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|
|:-------------:|:------:|:----:|:---------------:| |
|
|
| 0.965 | 0.0037 | 1 | 0.8999 | |
|
|
| 0.8101 | 0.2505 | 67 | 0.7453 | |
|
|
| 0.6077 | 0.5009 | 134 | 0.7342 | |
|
|
| 0.5874 | 0.7514 | 201 | 0.7270 | |
|
|
| 0.4362 | 1.0 | 268 | 0.7260 | |
|
|
| 0.6779 | 1.2505 | 335 | 0.7269 | |
|
|
| 0.505 | 1.5009 | 402 | 0.7310 | |
|
|
| 0.4969 | 1.7514 | 469 | 0.7274 | |
|
|
| 0.309 | 2.0 | 536 | 0.7332 | |
|
|
| 0.5954 | 2.2505 | 603 | 0.7428 | |
|
|
| 0.4302 | 2.5009 | 670 | 0.7514 | |
|
|
| 0.4301 | 2.7514 | 737 | 0.7491 | |
|
|
| 0.23 | 3.0 | 804 | 0.7559 | |
|
|
| 0.5296 | 3.2505 | 871 | 0.7683 | |
|
|
| 0.3761 | 3.5009 | 938 | 0.7857 | |
|
|
| 0.3916 | 3.7514 | 1005 | 0.7818 | |
|
|
| 0.1842 | 4.0 | 1072 | 0.7863 | |
|
|
| 0.4926 | 4.2505 | 1139 | 0.7980 | |
|
|
| 0.3469 | 4.5009 | 1206 | 0.8004 | |
|
|
| 0.3697 | 4.7514 | 1273 | 0.7908 | |
|
|
| 0.1665 | 5.0 | 1340 | 0.7925 | |
|
|
| 0.4773 | 5.2505 | 1407 | 0.8187 | |
|
|
| 0.3364 | 5.5009 | 1474 | 0.8071 | |
|
|
| 0.3622 | 5.7514 | 1541 | 0.8020 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.51.3 |
|
|
- Pytorch 2.5.1+cu121 |
|
|
- Datasets 3.5.1 |
|
|
- Tokenizers 0.21.1 |
|
|
|