metadata
license: apache-2.0
base_model: t5-large
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: t5-large_cola_sp0_ar0
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: cola
split: validation
args: cola
metrics:
- name: Accuracy
type: accuracy
value: 0.873046875
t5-large_cola_sp0_ar0
This model is a fine-tuned version of t5-large on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.4531
- Accuracy: 0.8730
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6179 | 0.05 | 25 | 0.7262 | 0.6913 |
0.5561 | 0.11 | 50 | 0.5504 | 0.6961 |
0.5041 | 0.16 | 75 | 0.5027 | 0.7996 |
0.454 | 0.21 | 100 | 0.5353 | 0.7881 |
0.3981 | 0.27 | 125 | 0.5393 | 0.8063 |
0.4205 | 0.32 | 150 | 0.5582 | 0.7987 |
0.4305 | 0.37 | 175 | 0.4384 | 0.8073 |
0.4041 | 0.42 | 200 | 0.5255 | 0.8140 |
0.4319 | 0.48 | 225 | 0.5297 | 0.8102 |
0.3674 | 0.53 | 250 | 0.4788 | 0.8226 |
0.4013 | 0.58 | 275 | 0.5254 | 0.8150 |
0.4003 | 0.64 | 300 | 0.4980 | 0.8044 |
0.3794 | 0.69 | 325 | 0.4988 | 0.8188 |
0.4002 | 0.74 | 350 | 0.4188 | 0.8274 |
0.3793 | 0.8 | 375 | 0.4412 | 0.8188 |
0.3502 | 0.85 | 400 | 0.4862 | 0.8178 |
0.3563 | 0.9 | 425 | 0.4951 | 0.8082 |
0.3962 | 0.96 | 450 | 0.5133 | 0.8073 |
0.3474 | 1.01 | 475 | 0.4908 | 0.8265 |
0.22 | 1.06 | 500 | 0.6653 | 0.8198 |
0.2745 | 1.11 | 525 | 0.4787 | 0.8360 |
0.2181 | 1.17 | 550 | 0.6265 | 0.8245 |
0.283 | 1.22 | 575 | 0.6629 | 0.8265 |
0.311 | 1.27 | 600 | 0.4652 | 0.8399 |
0.2169 | 1.33 | 625 | 0.5805 | 0.8370 |
0.2764 | 1.38 | 650 | 0.5420 | 0.8322 |
0.2186 | 1.43 | 675 | 0.5668 | 0.8322 |
0.3297 | 1.49 | 700 | 0.6130 | 0.8332 |
0.2419 | 1.54 | 725 | 0.4862 | 0.8332 |
0.2713 | 1.59 | 750 | 0.4718 | 0.8255 |
0.2681 | 1.65 | 775 | 0.4710 | 0.8322 |
0.231 | 1.7 | 800 | 0.6525 | 0.8121 |
0.2286 | 1.75 | 825 | 0.5772 | 0.8236 |
0.2965 | 1.8 | 850 | 0.5093 | 0.8303 |
0.2791 | 1.86 | 875 | 0.5118 | 0.8303 |
0.276 | 1.91 | 900 | 0.5549 | 0.8313 |
0.2555 | 1.96 | 925 | 0.5499 | 0.8255 |
0.2361 | 2.02 | 950 | 0.6162 | 0.8245 |
0.1706 | 2.07 | 975 | 0.5747 | 0.8380 |
0.1566 | 2.12 | 1000 | 1.1363 | 0.8265 |
0.2285 | 2.18 | 1025 | 0.9228 | 0.8341 |
0.1501 | 2.23 | 1050 | 0.7669 | 0.8284 |
0.1484 | 2.28 | 1075 | 0.8961 | 0.8380 |
0.1639 | 2.34 | 1100 | 1.1919 | 0.8303 |
0.1021 | 2.39 | 1125 | 3.1020 | 0.8351 |
0.1543 | 2.44 | 1150 | 3.1121 | 0.8332 |
0.208 | 2.49 | 1175 | 0.8105 | 0.8265 |
0.1513 | 2.55 | 1200 | 0.6624 | 0.8360 |
0.1866 | 2.6 | 1225 | 0.5803 | 0.8255 |
0.1504 | 2.65 | 1250 | 0.7874 | 0.8341 |
0.1929 | 2.71 | 1275 | 0.6037 | 0.8293 |
0.1972 | 2.76 | 1300 | 0.8352 | 0.8217 |
0.1037 | 2.81 | 1325 | 1.9576 | 0.8293 |
0.1279 | 2.87 | 1350 | 3.1590 | 0.8303 |
0.2085 | 2.92 | 1375 | 4.3899 | 0.8284 |
0.191 | 2.97 | 1400 | 3.4493 | 0.8341 |
0.1469 | 3.03 | 1425 | 2.4196 | 0.8303 |
0.1009 | 3.08 | 1450 | 2.8744 | 0.8360 |
0.1243 | 3.13 | 1475 | 3.1569 | 0.8380 |
0.0695 | 3.18 | 1500 | 4.7343 | 0.8389 |
0.3294 | 3.24 | 1525 | 5.9461 | 0.8370 |
0.35 | 3.29 | 1550 | 6.4079 | 0.8341 |
0.1144 | 3.34 | 1575 | 5.5799 | 0.8313 |
0.1151 | 3.4 | 1600 | 5.1090 | 0.8332 |
0.1197 | 3.45 | 1625 | 5.1001 | 0.8341 |
0.6171 | 3.5 | 1650 | 4.7312 | 0.8360 |
0.1307 | 3.56 | 1675 | 4.3671 | 0.8360 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.11.6