Upload 13 files
Browse files- README.md +67 -36
- config_setfit.json +2 -2
- model.safetensors +1 -1
- model_head.pkl +1 -1
README.md
CHANGED
@@ -9,12 +9,11 @@ base_model: intfloat/multilingual-e5-small
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
-
- text: 'query:
|
13 |
-
- text: 'query:
|
14 |
-
- text: 'query:
|
15 |
-
- text: 'query:
|
16 |
-
- text: 'query:
|
17 |
-
fertig?'
|
18 |
pipeline_tag: text-classification
|
19 |
inference: true
|
20 |
model-index:
|
@@ -61,10 +60,10 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
61 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
62 |
|
63 |
### Model Labels
|
64 |
-
| Label | Examples
|
65 |
-
|
66 |
-
| 0 | <ul><li>'query:
|
67 |
-
| 1 | <ul><li>'query:
|
68 |
|
69 |
## Evaluation
|
70 |
|
@@ -91,7 +90,7 @@ from setfit import SetFitModel
|
|
91 |
# Download from the 🤗 Hub
|
92 |
model = SetFitModel.from_pretrained("setfit_model_id")
|
93 |
# Run inference
|
94 |
-
preds = model("query:
|
95 |
```
|
96 |
|
97 |
<!--
|
@@ -123,23 +122,23 @@ preds = model("query: はい、持っていますよ。すぐにメールで送
|
|
123 |
### Training Set Metrics
|
124 |
| Training set | Min | Median | Max |
|
125 |
|:-------------|:----|:-------|:----|
|
126 |
-
| Word count | 2 | 7.
|
127 |
|
128 |
| Label | Training Sample Count |
|
129 |
|:------|:----------------------|
|
130 |
-
| 0 |
|
131 |
-
| 1 |
|
132 |
|
133 |
### Training Hyperparameters
|
134 |
- batch_size: (16, 2)
|
135 |
- num_epochs: (1, 16)
|
136 |
-
- max_steps:
|
137 |
- sampling_strategy: undersampling
|
138 |
-
- body_learning_rate: (1e-
|
139 |
- head_learning_rate: 0.001
|
140 |
- loss: CosineSimilarityLoss
|
141 |
- distance_metric: cosine_distance
|
142 |
-
- margin: 0.
|
143 |
- end_to_end: False
|
144 |
- use_amp: False
|
145 |
- warmup_proportion: 0.1
|
@@ -151,25 +150,57 @@ preds = model("query: はい、持っていますよ。すぐにメールで送
|
|
151 |
### Training Results
|
152 |
| Epoch | Step | Training Loss | Validation Loss |
|
153 |
|:------:|:----:|:-------------:|:---------------:|
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
| 0.
|
170 |
-
| 0.
|
171 |
-
| 0.
|
172 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
### Framework Versions
|
175 |
- Python: 3.10.11
|
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
widget:
|
12 |
+
- text: 'query: Baiklah, kita cakap lagi nanti, Mark. Selamat hari!'
|
13 |
+
- text: 'query: Tôi xin lỗi nhưng tôi phải đi'
|
14 |
+
- text: 'query: 次回行くときは、私を連れて行ってください。もっと自然の中で活動したいと思っています。'
|
15 |
+
- text: 'query: Entschuldigung, ich muss jetzt gehen.'
|
16 |
+
- text: 'query: Buenos días, ¿cómo están ustedes?'
|
|
|
17 |
pipeline_tag: text-classification
|
18 |
inference: true
|
19 |
model-index:
|
|
|
60 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
|
62 |
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 0 | <ul><li>'query: Értem. Mit csinálunk most?'</li><li>'query: Ola Luca, que tal? Rematache o traballo?'</li><li>'query: Lijepo je. Hvala.'</li></ul> |
|
66 |
+
| 1 | <ul><li>'query: Жөнейін, кейін кездесеміз.'</li><li>'query: Така, ќе се видиме повторно.'</li><li>'query: ठीक है बाद में बात करते हैं मार्क अच्छा दिन'</li></ul> |
|
67 |
|
68 |
## Evaluation
|
69 |
|
|
|
90 |
# Download from the 🤗 Hub
|
91 |
model = SetFitModel.from_pretrained("setfit_model_id")
|
92 |
# Run inference
|
93 |
+
preds = model("query: Tôi xin lỗi nhưng tôi phải đi")
|
94 |
```
|
95 |
|
96 |
<!--
|
|
|
122 |
### Training Set Metrics
|
123 |
| Training set | Min | Median | Max |
|
124 |
|:-------------|:----|:-------|:----|
|
125 |
+
| Word count | 2 | 7.2168 | 25 |
|
126 |
|
127 |
| Label | Training Sample Count |
|
128 |
|:------|:----------------------|
|
129 |
+
| 0 | 346 |
|
130 |
+
| 1 | 346 |
|
131 |
|
132 |
### Training Hyperparameters
|
133 |
- batch_size: (16, 2)
|
134 |
- num_epochs: (1, 16)
|
135 |
+
- max_steps: 2500
|
136 |
- sampling_strategy: undersampling
|
137 |
+
- body_learning_rate: (1e-06, 1e-06)
|
138 |
- head_learning_rate: 0.001
|
139 |
- loss: CosineSimilarityLoss
|
140 |
- distance_metric: cosine_distance
|
141 |
+
- margin: 0.25
|
142 |
- end_to_end: False
|
143 |
- use_amp: False
|
144 |
- warmup_proportion: 0.1
|
|
|
150 |
### Training Results
|
151 |
| Epoch | Step | Training Loss | Validation Loss |
|
152 |
|:------:|:----:|:-------------:|:---------------:|
|
153 |
+
| 0.0002 | 1 | 0.3607 | - |
|
154 |
+
| 0.0100 | 50 | 0.3634 | 0.3452 |
|
155 |
+
| 0.0200 | 100 | 0.3493 | 0.3377 |
|
156 |
+
| 0.0300 | 150 | 0.3244 | 0.3234 |
|
157 |
+
| 0.0400 | 200 | 0.3244 | 0.3034 |
|
158 |
+
| 0.0500 | 250 | 0.2931 | 0.2731 |
|
159 |
+
| 0.0600 | 300 | 0.2471 | 0.2398 |
|
160 |
+
| 0.0700 | 350 | 0.237 | 0.2168 |
|
161 |
+
| 0.0800 | 400 | 0.1964 | 0.2082 |
|
162 |
+
| 0.0900 | 450 | 0.2319 | 0.198 |
|
163 |
+
| 0.1000 | 500 | 0.2003 | 0.1968 |
|
164 |
+
| 0.1100 | 550 | 0.2014 | 0.1968 |
|
165 |
+
| 0.1200 | 600 | 0.1617 | 0.1879 |
|
166 |
+
| 0.1300 | 650 | 0.2214 | 0.1798 |
|
167 |
+
| 0.1400 | 700 | 0.2498 | 0.1768 |
|
168 |
+
| 0.1500 | 750 | 0.1527 | 0.1764 |
|
169 |
+
| 0.1600 | 800 | 0.1134 | 0.1733 |
|
170 |
+
| 0.1700 | 850 | 0.1393 | 0.1614 |
|
171 |
+
| 0.1800 | 900 | 0.1052 | 0.1549 |
|
172 |
+
| 0.1900 | 950 | 0.1772 | 0.149 |
|
173 |
+
| 0.2000 | 1000 | 0.1065 | 0.1504 |
|
174 |
+
| 0.2100 | 1050 | 0.087 | 0.1392 |
|
175 |
+
| 0.2200 | 1100 | 0.1416 | 0.1333 |
|
176 |
+
| 0.2300 | 1150 | 0.0767 | 0.1279 |
|
177 |
+
| 0.2400 | 1200 | 0.1228 | 0.1243 |
|
178 |
+
| 0.2500 | 1250 | 0.099 | 0.1128 |
|
179 |
+
| 0.2599 | 1300 | 0.1125 | 0.1106 |
|
180 |
+
| 0.2699 | 1350 | 0.1012 | 0.1156 |
|
181 |
+
| 0.2799 | 1400 | 0.0343 | 0.1022 |
|
182 |
+
| 0.2899 | 1450 | 0.0814 | 0.1012 |
|
183 |
+
| 0.2999 | 1500 | 0.0947 | 0.0965 |
|
184 |
+
| 0.3099 | 1550 | 0.0799 | 0.0964 |
|
185 |
+
| 0.3199 | 1600 | 0.113 | 0.0942 |
|
186 |
+
| 0.3299 | 1650 | 0.1125 | 0.0917 |
|
187 |
+
| 0.3399 | 1700 | 0.0507 | 0.0899 |
|
188 |
+
| 0.3499 | 1750 | 0.0986 | 0.0938 |
|
189 |
+
| 0.3599 | 1800 | 0.0885 | 0.0913 |
|
190 |
+
| 0.3699 | 1850 | 0.0712 | 0.0841 |
|
191 |
+
| 0.3799 | 1900 | 0.1131 | 0.0851 |
|
192 |
+
| 0.3899 | 1950 | 0.0701 | 0.0852 |
|
193 |
+
| 0.3999 | 2000 | 0.0805 | 0.0878 |
|
194 |
+
| 0.4099 | 2050 | 0.0375 | 0.0814 |
|
195 |
+
| 0.4199 | 2100 | 0.1236 | 0.0797 |
|
196 |
+
| 0.4299 | 2150 | 0.0532 | 0.0881 |
|
197 |
+
| 0.4399 | 2200 | 0.0265 | 0.0806 |
|
198 |
+
| 0.4499 | 2250 | 0.1268 | 0.0801 |
|
199 |
+
| 0.4599 | 2300 | 0.0557 | 0.0797 |
|
200 |
+
| 0.4699 | 2350 | 0.0956 | 0.0832 |
|
201 |
+
| 0.4799 | 2400 | 0.0671 | 0.081 |
|
202 |
+
| 0.4899 | 2450 | 0.1394 | 0.0794 |
|
203 |
+
| 0.4999 | 2500 | 0.1165 | 0.0798 |
|
204 |
|
205 |
### Framework Versions
|
206 |
- Python: 3.10.11
|
config_setfit.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
"
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 470637416
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:000d4f7a4721ae6d6796555a7183878a989fb298bc234cbeaa835da89987fcd1
|
3 |
size 470637416
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4608
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44141b4942a9da733aab94b65ce12c7ea66843c559dfd02e68618bf43a2f2997
|
3 |
size 4608
|