SetFit with intfloat/multilingual-e5-small
This is a SetFit model that can be used for Text Classification. This SetFit model uses intfloat/multilingual-e5-small as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: intfloat/multilingual-e5-small
- Classification head: a SetFitHead instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9333 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("query: Tôi xin lỗi nhưng tôi phải đi")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 7.2168 | 25 |
Label | Training Sample Count |
---|---|
0 | 346 |
1 | 346 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: 2500
- sampling_strategy: undersampling
- body_learning_rate: (1e-06, 1e-06)
- head_learning_rate: 0.001
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- run_name: multilingual-e5-small
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.3607 | - |
0.0100 | 50 | 0.3634 | 0.3452 |
0.0200 | 100 | 0.3493 | 0.3377 |
0.0300 | 150 | 0.3244 | 0.3234 |
0.0400 | 200 | 0.3244 | 0.3034 |
0.0500 | 250 | 0.2931 | 0.2731 |
0.0600 | 300 | 0.2471 | 0.2398 |
0.0700 | 350 | 0.237 | 0.2168 |
0.0800 | 400 | 0.1964 | 0.2082 |
0.0900 | 450 | 0.2319 | 0.198 |
0.1000 | 500 | 0.2003 | 0.1968 |
0.1100 | 550 | 0.2014 | 0.1968 |
0.1200 | 600 | 0.1617 | 0.1879 |
0.1300 | 650 | 0.2214 | 0.1798 |
0.1400 | 700 | 0.2498 | 0.1768 |
0.1500 | 750 | 0.1527 | 0.1764 |
0.1600 | 800 | 0.1134 | 0.1733 |
0.1700 | 850 | 0.1393 | 0.1614 |
0.1800 | 900 | 0.1052 | 0.1549 |
0.1900 | 950 | 0.1772 | 0.149 |
0.2000 | 1000 | 0.1065 | 0.1504 |
0.2100 | 1050 | 0.087 | 0.1392 |
0.2200 | 1100 | 0.1416 | 0.1333 |
0.2300 | 1150 | 0.0767 | 0.1279 |
0.2400 | 1200 | 0.1228 | 0.1243 |
0.2500 | 1250 | 0.099 | 0.1128 |
0.2599 | 1300 | 0.1125 | 0.1106 |
0.2699 | 1350 | 0.1012 | 0.1156 |
0.2799 | 1400 | 0.0343 | 0.1022 |
0.2899 | 1450 | 0.0814 | 0.1012 |
0.2999 | 1500 | 0.0947 | 0.0965 |
0.3099 | 1550 | 0.0799 | 0.0964 |
0.3199 | 1600 | 0.113 | 0.0942 |
0.3299 | 1650 | 0.1125 | 0.0917 |
0.3399 | 1700 | 0.0507 | 0.0899 |
0.3499 | 1750 | 0.0986 | 0.0938 |
0.3599 | 1800 | 0.0885 | 0.0913 |
0.3699 | 1850 | 0.0712 | 0.0841 |
0.3799 | 1900 | 0.1131 | 0.0851 |
0.3899 | 1950 | 0.0701 | 0.0852 |
0.3999 | 2000 | 0.0805 | 0.0878 |
0.4099 | 2050 | 0.0375 | 0.0814 |
0.4199 | 2100 | 0.1236 | 0.0797 |
0.4299 | 2150 | 0.0532 | 0.0881 |
0.4399 | 2200 | 0.0265 | 0.0806 |
0.4499 | 2250 | 0.1268 | 0.0801 |
0.4599 | 2300 | 0.0557 | 0.0797 |
0.4699 | 2350 | 0.0956 | 0.0832 |
0.4799 | 2400 | 0.0671 | 0.081 |
0.4899 | 2450 | 0.1394 | 0.0794 |
0.4999 | 2500 | 0.1165 | 0.0798 |
Framework Versions
- Python: 3.10.11
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.3
- PyTorch: 2.4.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 21
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for thegenerativegeneration/stay_or_go_conversation_classifier_s_v2
Base model
intfloat/multilingual-e5-small