thegeekybeng's picture
πŸš€ Deploy TIPM v1.5 - Professional Economic Intelligence Platform
8986ff6
"""
Enhanced TIPM Core with Real Data Integration
===========================================
This module extends the TIPM core model to work with real-world datasets
from authoritative sources like UN Comtrade, World Bank, OECD, etc.
"""
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any
import logging
from dataclasses import dataclass
from .core import TIPMModel, TariffShock, TIPMPrediction
from .config.settings import TIPMConfig
from .data_connectors import DataIntegrationManager
logger = logging.getLogger(__name__)
@dataclass
class RealDataConfig:
"""Configuration for real data integration"""
data_cache_dir: str = "real_data_cache"
max_cache_age_hours: int = 24
fallback_to_synthetic: bool = True
min_data_points: int = 10
# Data source preferences
primary_trade_source: str = "comtrade" # comtrade, wits
primary_economic_source: str = "worldbank" # worldbank, oecd
primary_sentiment_source: str = "gdelt" # gdelt, news_api
# Quality thresholds
min_trade_coverage: float = 0.7 # Minimum trade flow coverage
min_temporal_coverage: float = 0.8 # Minimum time series coverage
max_missing_data_ratio: float = 0.3
class RealDataTIPMModel(TIPMModel):
"""
Enhanced TIPM model that integrates real-world datasets
"""
def __init__(
self,
config: Optional[TIPMConfig] = None,
real_data_config: Optional[RealDataConfig] = None,
):
super().__init__(config)
self.real_data_config = real_data_config or RealDataConfig()
self.data_manager = DataIntegrationManager(self.real_data_config.data_cache_dir)
# Real data storage
self.real_datasets = {}
self.data_quality_metrics = {}
self.last_data_update = None
logger.info("Initialized RealDataTIPMModel with real data connectors")
def load_real_data(
self,
countries: List[str],
hs_codes: List[str],
years: List[int],
force_refresh: bool = False,
) -> Dict[str, pd.DataFrame]:
"""
Load real datasets for the specified parameters
Args:
countries: List of country codes (ISO3 or UN codes)
hs_codes: List of HS product codes
years: List of years to analyze
force_refresh: Force refresh of cached data
"""
logger.info(
f"Loading real data for {len(countries)} countries, {len(hs_codes)} products, {len(years)} years"
)
# Check if we need to refresh data
if (
force_refresh
or self.last_data_update is None
or datetime.now() - self.last_data_update
> timedelta(hours=self.real_data_config.max_cache_age_hours)
):
logger.info("Fetching fresh data from external sources...")
# Fetch comprehensive dataset
raw_datasets = self.data_manager.fetch_comprehensive_dataset(
countries=countries,
hs_codes=hs_codes,
years=years,
tariff_query=f"tariff {' '.join(hs_codes)} trade",
)
# Process and validate data
self.real_datasets = self._process_raw_datasets(
raw_datasets, countries, hs_codes, years
)
self.data_quality_metrics = self._assess_data_quality(self.real_datasets)
self.last_data_update = datetime.now()
logger.info("Real data loading completed")
return self.real_datasets
def _process_raw_datasets(
self,
raw_datasets: Dict[str, pd.DataFrame],
countries: List[str],
hs_codes: List[str],
years: List[int],
) -> Dict[str, pd.DataFrame]:
"""Process raw datasets into TIPM-compatible format"""
processed = {}
# 1. Process trade flows
if "trade_flows" in raw_datasets and not raw_datasets["trade_flows"].empty:
processed["trade_flows"] = self._process_trade_flows(
raw_datasets["trade_flows"], countries, hs_codes, years
)
# 2. Process tariff data
if "tariff_rates" in raw_datasets and not raw_datasets["tariff_rates"].empty:
processed["tariff_shocks"] = self._process_tariff_data(
raw_datasets["tariff_rates"], countries, hs_codes, years
)
# 3. Process economic indicators
if (
"economic_indicators" in raw_datasets
and not raw_datasets["economic_indicators"].empty
):
processed.update(
self._process_economic_indicators(
raw_datasets["economic_indicators"], countries, years
)
)
# 4. Process sentiment data
if (
"news_sentiment" in raw_datasets
and not raw_datasets["news_sentiment"].empty
):
processed["geopolitical_events"] = self._process_sentiment_data(
raw_datasets["news_sentiment"], countries, years
)
# 5. Process political events
if (
"political_events" in raw_datasets
and not raw_datasets["political_events"].empty
):
processed["political_stability"] = self._process_political_events(
raw_datasets["political_events"], countries, years
)
return processed
def _process_trade_flows(
self,
df: pd.DataFrame,
countries: List[str],
hs_codes: List[str],
years: List[int],
) -> pd.DataFrame:
"""Process UN Comtrade trade flow data"""
if df.empty:
return pd.DataFrame()
try:
# Standardize columns
processed = df.copy()
# Map column names to TIPM standard
column_mapping = {
"reporterCode": "origin_country",
"partnerCode": "destination_country",
"cmdCode": "hs_code",
"period": "year",
"primaryValue": "trade_value",
"netWeight": "trade_volume",
"tradeValue": "trade_value",
}
for old_col, new_col in column_mapping.items():
if old_col in processed.columns:
processed[new_col] = processed[old_col]
# Ensure required columns exist
required_cols = [
"origin_country",
"destination_country",
"hs_code",
"year",
"trade_value",
]
for col in required_cols:
if col not in processed.columns:
processed[col] = 0
# Add derived columns
processed["transport_cost"] = (
processed["trade_value"] * 0.05
) # Estimate 5% transport cost
processed["lead_time"] = 30 # Default 30 days lead time
# Filter for requested parameters
if "origin_country" in processed.columns and "hs_code" in processed.columns:
processed = processed[
(
processed["origin_country"]
.astype(str)
.isin([str(c) for c in countries])
)
& (
processed["hs_code"]
.astype(str)
.isin([str(h) for h in hs_codes])
)
& (processed["year"].isin(years))
]
# Clean and validate
processed = processed.dropna(subset=["trade_value"])
processed["trade_value"] = pd.to_numeric(
processed["trade_value"], errors="coerce"
).fillna(0)
logger.info(f"Processed {len(processed)} trade flow records")
return processed[required_cols + ["transport_cost", "lead_time"]]
except Exception as e:
logger.error(f"Error processing trade flows: {e}")
return pd.DataFrame()
def _process_tariff_data(
self,
df: pd.DataFrame,
countries: List[str],
hs_codes: List[str],
years: List[int],
) -> pd.DataFrame:
"""Process tariff rate data from WITS"""
if df.empty:
return pd.DataFrame()
try:
processed = df.copy()
# Create policy text from tariff data
processed["policy_text"] = processed.apply(
lambda row: f"Tariff rate of {row.get('tariff_rate', 0):.1%} imposed on imports from {row.get('country', 'unknown')} for product {row.get('product_code', 'unknown')}",
axis=1,
)
# Standardize date format
processed["effective_date"] = processed["year"].astype(str) + "-01-01"
# Add required columns
processed["hs_codes"] = processed.get("product_code", "").astype(str)
processed["tariff_rates"] = processed.get("tariff_rate", 0.15)
processed["countries"] = (
processed.get("country", "") + ",US"
) # Assume bilateral with US
required_cols = [
"policy_text",
"effective_date",
"hs_codes",
"tariff_rates",
"countries",
]
logger.info(f"Processed {len(processed)} tariff policy records")
return processed[required_cols]
except Exception as e:
logger.error(f"Error processing tariff data: {e}")
return pd.DataFrame()
def _process_economic_indicators(
self, df: pd.DataFrame, countries: List[str], years: List[int]
) -> Dict[str, pd.DataFrame]:
"""Process World Bank economic indicators"""
if df.empty:
return {}
try:
processed_datasets = {}
# Group by indicator
for indicator_code in df["indicator_code"].unique():
indicator_data = df[df["indicator_code"] == indicator_code].copy()
if indicator_code == "FP.CPI.TOTL": # CPI data for consumer impact
consumer_data = []
for _, row in indicator_data.iterrows():
consumer_data.append(
{
"product_category": "general_goods",
"price_change": float(row.get("value", 0))
/ 100, # Convert to decimal
"country": row.get("countryiso3code", "unknown"),
"year": row.get("date", 2023),
}
)
if consumer_data:
processed_datasets["consumer_impacts"] = pd.DataFrame(
consumer_data
)
elif indicator_code == "SL.UEM.TOTL.ZS": # Unemployment for firm impact
firm_data = []
for _, row in indicator_data.iterrows():
unemployment_rate = float(row.get("value", 5)) / 100
firm_data.append(
{
"firm_id": f"aggregate_{row.get('countryiso3code', 'unknown')}",
"response_metric": unemployment_rate,
"country": row.get("countryiso3code", "unknown"),
"year": row.get("date", 2023),
}
)
if firm_data:
processed_datasets["firm_responses"] = pd.DataFrame(firm_data)
elif indicator_code == "NY.GDP.MKTP.CD": # GDP for industry response
industry_data = []
for _, row in indicator_data.iterrows():
gdp_growth = float(row.get("value", 0)) / 1e12 # Normalize
industry_data.append(
{
"industry_code": "aggregate",
"response_metric": gdp_growth,
"country": row.get("countryiso3code", "unknown"),
"year": row.get("date", 2023),
}
)
if industry_data:
processed_datasets["industry_responses"] = pd.DataFrame(
industry_data
)
logger.info(
f"Processed economic indicators into {len(processed_datasets)} datasets"
)
return processed_datasets
except Exception as e:
logger.error(f"Error processing economic indicators: {e}")
return {}
def _process_sentiment_data(
self, df: pd.DataFrame, countries: List[str], years: List[int]
) -> pd.DataFrame:
"""Process GDELT news sentiment data"""
if df.empty:
return pd.DataFrame()
try:
processed = df.copy()
# Aggregate sentiment by country and time period
processed["date"] = pd.to_datetime(processed["date"], errors="coerce")
processed["year"] = processed["date"].dt.year
processed["month"] = processed["date"].dt.month
# Calculate average sentiment
sentiment_agg = (
processed.groupby(["country", "year"])
.agg(
{
"tone": "mean",
"social_image_shares": "sum",
"title": lambda x: " ".join(x[:5]), # Combine first 5 titles
}
)
.reset_index()
)
# Convert to geopolitical events format
geo_events = []
for _, row in sentiment_agg.iterrows():
geo_events.append(
{
"event_text": f"News coverage: {row['title'][:100]}...",
"sentiment": row["tone"] / 100, # Normalize tone
"country": row["country"],
"year": row["year"],
"social_engagement": row["social_image_shares"],
}
)
result = pd.DataFrame(geo_events)
logger.info(f"Processed {len(result)} geopolitical sentiment records")
return result
except Exception as e:
logger.error(f"Error processing sentiment data: {e}")
return pd.DataFrame()
def _process_political_events(
self, df: pd.DataFrame, countries: List[str], years: List[int]
) -> pd.DataFrame:
"""Process ACLED political events data"""
if df.empty:
return pd.DataFrame()
try:
processed = df.copy()
# Count events by country and type
if "event_date" in processed.columns:
processed["event_date"] = pd.to_datetime(
processed["event_date"], errors="coerce"
)
processed["year"] = processed["event_date"].dt.year
# Aggregate by country and year
event_counts = (
processed.groupby(["country", "year"])
.agg({"event_type": "count", "fatalities": "sum"})
.reset_index()
)
# Convert to stability indicators
stability_data = []
for _, row in event_counts.iterrows():
# Higher events = lower stability
stability_score = max(0, 1 - (row["event_type"] / 100))
stability_data.append(
{
"country": row["country"],
"year": row["year"],
"political_stability": stability_score,
"protest_events": row["event_type"],
"fatalities": row.get("fatalities", 0),
}
)
result = pd.DataFrame(stability_data)
logger.info(f"Processed {len(result)} political stability records")
return result
except Exception as e:
logger.error(f"Error processing political events: {e}")
return pd.DataFrame()
def _assess_data_quality(self, datasets: Dict[str, pd.DataFrame]) -> Dict[str, Any]:
"""Assess quality of loaded real datasets"""
quality_metrics = {}
for name, df in datasets.items():
if df.empty:
quality_metrics[name] = {
"quality_score": 0.0,
"record_count": 0,
"completeness": 0.0,
"issues": ["No data available"],
}
continue
# Calculate completeness
total_cells = df.shape[0] * df.shape[1]
missing_cells = df.isnull().sum().sum()
completeness = (
(total_cells - missing_cells) / total_cells if total_cells > 0 else 0
)
# Assess temporal coverage
temporal_coverage = 1.0
if "year" in df.columns:
expected_years = set(range(2020, 2025)) # Recent years
actual_years = set(df["year"].unique())
temporal_coverage = len(
actual_years.intersection(expected_years)
) / len(expected_years)
# Calculate overall quality score
quality_score = (completeness + temporal_coverage) / 2
# Identify issues
issues = []
if completeness < 0.8:
issues.append(f"High missing data rate: {(1-completeness)*100:.1f}%")
if temporal_coverage < 0.5:
issues.append(f"Poor temporal coverage: {temporal_coverage*100:.1f}%")
if len(df) < self.real_data_config.min_data_points:
issues.append(f"Insufficient data points: {len(df)}")
quality_metrics[name] = {
"quality_score": quality_score,
"record_count": len(df),
"completeness": completeness,
"temporal_coverage": temporal_coverage,
"issues": issues,
}
return quality_metrics
def fit_with_real_data(
self,
countries: List[str],
hs_codes: List[str],
years: List[int],
force_refresh: bool = False,
) -> "RealDataTIPMModel":
"""
Train TIPM model using real datasets
Args:
countries: Country codes to analyze
hs_codes: Product codes to analyze
years: Years of data to use for training
force_refresh: Force refresh of cached data
"""
logger.info("Training TIPM with real datasets...")
# Load real data
real_datasets = self.load_real_data(countries, hs_codes, years, force_refresh)
# Check data quality and decide whether to use real data or fall back
training_data = {}
for layer_name, dataset_name in [
("tariff_shocks", "tariff_shocks"),
("trade_flows", "trade_flows"),
("industry_responses", "industry_responses"),
("firm_responses", "firm_responses"),
("consumer_impacts", "consumer_impacts"),
("geopolitical_events", "geopolitical_events"),
]:
if (
dataset_name in real_datasets
and not real_datasets[dataset_name].empty
and self.data_quality_metrics.get(dataset_name, {}).get(
"quality_score", 0
)
> 0.3
):
# Use real data
training_data[layer_name] = real_datasets[dataset_name]
logger.info(
f"Using real data for {layer_name}: {len(real_datasets[dataset_name])} records"
)
elif self.real_data_config.fallback_to_synthetic:
# Fall back to synthetic data
training_data[layer_name] = self._generate_fallback_data(
layer_name, countries, hs_codes, years
)
logger.info(f"Using synthetic fallback for {layer_name}")
else:
# No data available
training_data[layer_name] = pd.DataFrame()
logger.warning(f"No data available for {layer_name}")
# Train the model
self.fit(training_data)
# Store metadata
self.model_metadata.update(
{
"data_sources": list(real_datasets.keys()),
"data_quality": self.data_quality_metrics,
"training_countries": countries,
"training_hs_codes": hs_codes,
"training_years": years,
"last_trained": datetime.now().isoformat(),
}
)
logger.info("Real data training completed")
return self
def _generate_fallback_data(
self,
layer_name: str,
countries: List[str],
hs_codes: List[str],
years: List[int],
) -> pd.DataFrame:
"""Generate synthetic fallback data when real data is unavailable"""
np.random.seed(42) # Reproducible synthetic data
if layer_name == "tariff_shocks":
return pd.DataFrame(
{
"policy_text": [f"Fallback tariff policy for {hs_codes[0]}"]
* len(countries),
"effective_date": ["2023-01-01"] * len(countries),
"hs_codes": [",".join(hs_codes)] * len(countries),
"tariff_rates": np.random.uniform(0.1, 0.3, len(countries)),
"countries": [f"{c},US" for c in countries],
}
)
elif layer_name == "trade_flows":
n_records = len(countries) * len(hs_codes) * len(years)
return pd.DataFrame(
{
"hs_code": np.tile(hs_codes, len(countries) * len(years)),
"origin_country": np.repeat(countries, len(hs_codes) * len(years)),
"destination_country": ["US"] * n_records,
"trade_value": np.random.lognormal(
15, 1, n_records
), # Realistic trade values
"year": np.tile(np.repeat(years, len(hs_codes)), len(countries)),
"transport_cost": np.random.uniform(10000, 100000, n_records),
"lead_time": np.random.uniform(20, 60, n_records),
}
)
elif layer_name == "industry_responses":
return pd.DataFrame(
{
"industry_code": ["electronics", "manufacturing", "services"],
"response_metric": np.random.normal(0.1, 0.05, 3),
}
)
elif layer_name == "firm_responses":
return pd.DataFrame(
{
"firm_id": [f"firm_{i}" for i in range(5)],
"response_metric": np.random.normal(0.1, 0.05, 5),
}
)
elif layer_name == "consumer_impacts":
return pd.DataFrame(
{
"product_category": ["electronics", "general_goods"],
"price_change": np.random.uniform(0.02, 0.08, 2),
}
)
elif layer_name == "geopolitical_events":
return pd.DataFrame(
{"event_text": ["Fallback geopolitical event"], "sentiment": [0.0]}
)
return pd.DataFrame()
def get_data_provenance(self) -> Dict[str, Any]:
"""Get information about data sources and quality"""
return {
"last_update": (
self.last_data_update.isoformat() if self.last_data_update else None
),
"datasets_available": list(self.real_datasets.keys()),
"data_quality_metrics": self.data_quality_metrics,
"model_metadata": self.model_metadata,
"configuration": {
"cache_directory": self.real_data_config.data_cache_dir,
"fallback_enabled": self.real_data_config.fallback_to_synthetic,
"quality_thresholds": {
"min_data_points": self.real_data_config.min_data_points,
"min_trade_coverage": self.real_data_config.min_trade_coverage,
"max_missing_data_ratio": self.real_data_config.max_missing_data_ratio,
},
},
}
# Usage example
if __name__ == "__main__":
# Test real data integration
real_model = RealDataTIPMModel()
# Train with real data for US-China electronics trade
real_model.fit_with_real_data(
countries=["840", "156"], # US, China
hs_codes=["8517", "8471"], # Telecom, computers
years=[2022, 2023, 2024],
)
# Get data provenance
provenance = real_model.get_data_provenance()
print("Data Provenance:")
print(json.dumps(provenance, indent=2))