File size: 25,563 Bytes
8986ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
"""
Enhanced TIPM Core with Real Data Integration
===========================================

This module extends the TIPM core model to work with real-world datasets
from authoritative sources like UN Comtrade, World Bank, OECD, etc.
"""

import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any
import logging
from dataclasses import dataclass

from .core import TIPMModel, TariffShock, TIPMPrediction
from .config.settings import TIPMConfig
from .data_connectors import DataIntegrationManager

logger = logging.getLogger(__name__)


@dataclass
class RealDataConfig:
    """Configuration for real data integration"""

    data_cache_dir: str = "real_data_cache"
    max_cache_age_hours: int = 24
    fallback_to_synthetic: bool = True
    min_data_points: int = 10

    # Data source preferences
    primary_trade_source: str = "comtrade"  # comtrade, wits
    primary_economic_source: str = "worldbank"  # worldbank, oecd
    primary_sentiment_source: str = "gdelt"  # gdelt, news_api

    # Quality thresholds
    min_trade_coverage: float = 0.7  # Minimum trade flow coverage
    min_temporal_coverage: float = 0.8  # Minimum time series coverage
    max_missing_data_ratio: float = 0.3


class RealDataTIPMModel(TIPMModel):
    """
    Enhanced TIPM model that integrates real-world datasets
    """

    def __init__(
        self,
        config: Optional[TIPMConfig] = None,
        real_data_config: Optional[RealDataConfig] = None,
    ):
        super().__init__(config)

        self.real_data_config = real_data_config or RealDataConfig()
        self.data_manager = DataIntegrationManager(self.real_data_config.data_cache_dir)

        # Real data storage
        self.real_datasets = {}
        self.data_quality_metrics = {}
        self.last_data_update = None

        logger.info("Initialized RealDataTIPMModel with real data connectors")

    def load_real_data(
        self,
        countries: List[str],
        hs_codes: List[str],
        years: List[int],
        force_refresh: bool = False,
    ) -> Dict[str, pd.DataFrame]:
        """
        Load real datasets for the specified parameters

        Args:
            countries: List of country codes (ISO3 or UN codes)
            hs_codes: List of HS product codes
            years: List of years to analyze
            force_refresh: Force refresh of cached data
        """

        logger.info(
            f"Loading real data for {len(countries)} countries, {len(hs_codes)} products, {len(years)} years"
        )

        # Check if we need to refresh data
        if (
            force_refresh
            or self.last_data_update is None
            or datetime.now() - self.last_data_update
            > timedelta(hours=self.real_data_config.max_cache_age_hours)
        ):

            logger.info("Fetching fresh data from external sources...")

            # Fetch comprehensive dataset
            raw_datasets = self.data_manager.fetch_comprehensive_dataset(
                countries=countries,
                hs_codes=hs_codes,
                years=years,
                tariff_query=f"tariff {' '.join(hs_codes)} trade",
            )

            # Process and validate data
            self.real_datasets = self._process_raw_datasets(
                raw_datasets, countries, hs_codes, years
            )
            self.data_quality_metrics = self._assess_data_quality(self.real_datasets)
            self.last_data_update = datetime.now()

            logger.info("Real data loading completed")

        return self.real_datasets

    def _process_raw_datasets(
        self,
        raw_datasets: Dict[str, pd.DataFrame],
        countries: List[str],
        hs_codes: List[str],
        years: List[int],
    ) -> Dict[str, pd.DataFrame]:
        """Process raw datasets into TIPM-compatible format"""

        processed = {}

        # 1. Process trade flows
        if "trade_flows" in raw_datasets and not raw_datasets["trade_flows"].empty:
            processed["trade_flows"] = self._process_trade_flows(
                raw_datasets["trade_flows"], countries, hs_codes, years
            )

        # 2. Process tariff data
        if "tariff_rates" in raw_datasets and not raw_datasets["tariff_rates"].empty:
            processed["tariff_shocks"] = self._process_tariff_data(
                raw_datasets["tariff_rates"], countries, hs_codes, years
            )

        # 3. Process economic indicators
        if (
            "economic_indicators" in raw_datasets
            and not raw_datasets["economic_indicators"].empty
        ):
            processed.update(
                self._process_economic_indicators(
                    raw_datasets["economic_indicators"], countries, years
                )
            )

        # 4. Process sentiment data
        if (
            "news_sentiment" in raw_datasets
            and not raw_datasets["news_sentiment"].empty
        ):
            processed["geopolitical_events"] = self._process_sentiment_data(
                raw_datasets["news_sentiment"], countries, years
            )

        # 5. Process political events
        if (
            "political_events" in raw_datasets
            and not raw_datasets["political_events"].empty
        ):
            processed["political_stability"] = self._process_political_events(
                raw_datasets["political_events"], countries, years
            )

        return processed

    def _process_trade_flows(
        self,
        df: pd.DataFrame,
        countries: List[str],
        hs_codes: List[str],
        years: List[int],
    ) -> pd.DataFrame:
        """Process UN Comtrade trade flow data"""

        if df.empty:
            return pd.DataFrame()

        try:
            # Standardize columns
            processed = df.copy()

            # Map column names to TIPM standard
            column_mapping = {
                "reporterCode": "origin_country",
                "partnerCode": "destination_country",
                "cmdCode": "hs_code",
                "period": "year",
                "primaryValue": "trade_value",
                "netWeight": "trade_volume",
                "tradeValue": "trade_value",
            }

            for old_col, new_col in column_mapping.items():
                if old_col in processed.columns:
                    processed[new_col] = processed[old_col]

            # Ensure required columns exist
            required_cols = [
                "origin_country",
                "destination_country",
                "hs_code",
                "year",
                "trade_value",
            ]
            for col in required_cols:
                if col not in processed.columns:
                    processed[col] = 0

            # Add derived columns
            processed["transport_cost"] = (
                processed["trade_value"] * 0.05
            )  # Estimate 5% transport cost
            processed["lead_time"] = 30  # Default 30 days lead time

            # Filter for requested parameters
            if "origin_country" in processed.columns and "hs_code" in processed.columns:
                processed = processed[
                    (
                        processed["origin_country"]
                        .astype(str)
                        .isin([str(c) for c in countries])
                    )
                    & (
                        processed["hs_code"]
                        .astype(str)
                        .isin([str(h) for h in hs_codes])
                    )
                    & (processed["year"].isin(years))
                ]

            # Clean and validate
            processed = processed.dropna(subset=["trade_value"])
            processed["trade_value"] = pd.to_numeric(
                processed["trade_value"], errors="coerce"
            ).fillna(0)

            logger.info(f"Processed {len(processed)} trade flow records")
            return processed[required_cols + ["transport_cost", "lead_time"]]

        except Exception as e:
            logger.error(f"Error processing trade flows: {e}")
            return pd.DataFrame()

    def _process_tariff_data(
        self,
        df: pd.DataFrame,
        countries: List[str],
        hs_codes: List[str],
        years: List[int],
    ) -> pd.DataFrame:
        """Process tariff rate data from WITS"""

        if df.empty:
            return pd.DataFrame()

        try:
            processed = df.copy()

            # Create policy text from tariff data
            processed["policy_text"] = processed.apply(
                lambda row: f"Tariff rate of {row.get('tariff_rate', 0):.1%} imposed on imports from {row.get('country', 'unknown')} for product {row.get('product_code', 'unknown')}",
                axis=1,
            )

            # Standardize date format
            processed["effective_date"] = processed["year"].astype(str) + "-01-01"

            # Add required columns
            processed["hs_codes"] = processed.get("product_code", "").astype(str)
            processed["tariff_rates"] = processed.get("tariff_rate", 0.15)
            processed["countries"] = (
                processed.get("country", "") + ",US"
            )  # Assume bilateral with US

            required_cols = [
                "policy_text",
                "effective_date",
                "hs_codes",
                "tariff_rates",
                "countries",
            ]

            logger.info(f"Processed {len(processed)} tariff policy records")
            return processed[required_cols]

        except Exception as e:
            logger.error(f"Error processing tariff data: {e}")
            return pd.DataFrame()

    def _process_economic_indicators(
        self, df: pd.DataFrame, countries: List[str], years: List[int]
    ) -> Dict[str, pd.DataFrame]:
        """Process World Bank economic indicators"""

        if df.empty:
            return {}

        try:
            processed_datasets = {}

            # Group by indicator
            for indicator_code in df["indicator_code"].unique():
                indicator_data = df[df["indicator_code"] == indicator_code].copy()

                if indicator_code == "FP.CPI.TOTL":  # CPI data for consumer impact
                    consumer_data = []
                    for _, row in indicator_data.iterrows():
                        consumer_data.append(
                            {
                                "product_category": "general_goods",
                                "price_change": float(row.get("value", 0))
                                / 100,  # Convert to decimal
                                "country": row.get("countryiso3code", "unknown"),
                                "year": row.get("date", 2023),
                            }
                        )

                    if consumer_data:
                        processed_datasets["consumer_impacts"] = pd.DataFrame(
                            consumer_data
                        )

                elif indicator_code == "SL.UEM.TOTL.ZS":  # Unemployment for firm impact
                    firm_data = []
                    for _, row in indicator_data.iterrows():
                        unemployment_rate = float(row.get("value", 5)) / 100
                        firm_data.append(
                            {
                                "firm_id": f"aggregate_{row.get('countryiso3code', 'unknown')}",
                                "response_metric": unemployment_rate,
                                "country": row.get("countryiso3code", "unknown"),
                                "year": row.get("date", 2023),
                            }
                        )

                    if firm_data:
                        processed_datasets["firm_responses"] = pd.DataFrame(firm_data)

                elif indicator_code == "NY.GDP.MKTP.CD":  # GDP for industry response
                    industry_data = []
                    for _, row in indicator_data.iterrows():
                        gdp_growth = float(row.get("value", 0)) / 1e12  # Normalize
                        industry_data.append(
                            {
                                "industry_code": "aggregate",
                                "response_metric": gdp_growth,
                                "country": row.get("countryiso3code", "unknown"),
                                "year": row.get("date", 2023),
                            }
                        )

                    if industry_data:
                        processed_datasets["industry_responses"] = pd.DataFrame(
                            industry_data
                        )

            logger.info(
                f"Processed economic indicators into {len(processed_datasets)} datasets"
            )
            return processed_datasets

        except Exception as e:
            logger.error(f"Error processing economic indicators: {e}")
            return {}

    def _process_sentiment_data(
        self, df: pd.DataFrame, countries: List[str], years: List[int]
    ) -> pd.DataFrame:
        """Process GDELT news sentiment data"""

        if df.empty:
            return pd.DataFrame()

        try:
            processed = df.copy()

            # Aggregate sentiment by country and time period
            processed["date"] = pd.to_datetime(processed["date"], errors="coerce")
            processed["year"] = processed["date"].dt.year
            processed["month"] = processed["date"].dt.month

            # Calculate average sentiment
            sentiment_agg = (
                processed.groupby(["country", "year"])
                .agg(
                    {
                        "tone": "mean",
                        "social_image_shares": "sum",
                        "title": lambda x: " ".join(x[:5]),  # Combine first 5 titles
                    }
                )
                .reset_index()
            )

            # Convert to geopolitical events format
            geo_events = []
            for _, row in sentiment_agg.iterrows():
                geo_events.append(
                    {
                        "event_text": f"News coverage: {row['title'][:100]}...",
                        "sentiment": row["tone"] / 100,  # Normalize tone
                        "country": row["country"],
                        "year": row["year"],
                        "social_engagement": row["social_image_shares"],
                    }
                )

            result = pd.DataFrame(geo_events)
            logger.info(f"Processed {len(result)} geopolitical sentiment records")
            return result

        except Exception as e:
            logger.error(f"Error processing sentiment data: {e}")
            return pd.DataFrame()

    def _process_political_events(
        self, df: pd.DataFrame, countries: List[str], years: List[int]
    ) -> pd.DataFrame:
        """Process ACLED political events data"""

        if df.empty:
            return pd.DataFrame()

        try:
            processed = df.copy()

            # Count events by country and type
            if "event_date" in processed.columns:
                processed["event_date"] = pd.to_datetime(
                    processed["event_date"], errors="coerce"
                )
                processed["year"] = processed["event_date"].dt.year

            # Aggregate by country and year
            event_counts = (
                processed.groupby(["country", "year"])
                .agg({"event_type": "count", "fatalities": "sum"})
                .reset_index()
            )

            # Convert to stability indicators
            stability_data = []
            for _, row in event_counts.iterrows():
                # Higher events = lower stability
                stability_score = max(0, 1 - (row["event_type"] / 100))

                stability_data.append(
                    {
                        "country": row["country"],
                        "year": row["year"],
                        "political_stability": stability_score,
                        "protest_events": row["event_type"],
                        "fatalities": row.get("fatalities", 0),
                    }
                )

            result = pd.DataFrame(stability_data)
            logger.info(f"Processed {len(result)} political stability records")
            return result

        except Exception as e:
            logger.error(f"Error processing political events: {e}")
            return pd.DataFrame()

    def _assess_data_quality(self, datasets: Dict[str, pd.DataFrame]) -> Dict[str, Any]:
        """Assess quality of loaded real datasets"""

        quality_metrics = {}

        for name, df in datasets.items():
            if df.empty:
                quality_metrics[name] = {
                    "quality_score": 0.0,
                    "record_count": 0,
                    "completeness": 0.0,
                    "issues": ["No data available"],
                }
                continue

            # Calculate completeness
            total_cells = df.shape[0] * df.shape[1]
            missing_cells = df.isnull().sum().sum()
            completeness = (
                (total_cells - missing_cells) / total_cells if total_cells > 0 else 0
            )

            # Assess temporal coverage
            temporal_coverage = 1.0
            if "year" in df.columns:
                expected_years = set(range(2020, 2025))  # Recent years
                actual_years = set(df["year"].unique())
                temporal_coverage = len(
                    actual_years.intersection(expected_years)
                ) / len(expected_years)

            # Calculate overall quality score
            quality_score = (completeness + temporal_coverage) / 2

            # Identify issues
            issues = []
            if completeness < 0.8:
                issues.append(f"High missing data rate: {(1-completeness)*100:.1f}%")
            if temporal_coverage < 0.5:
                issues.append(f"Poor temporal coverage: {temporal_coverage*100:.1f}%")
            if len(df) < self.real_data_config.min_data_points:
                issues.append(f"Insufficient data points: {len(df)}")

            quality_metrics[name] = {
                "quality_score": quality_score,
                "record_count": len(df),
                "completeness": completeness,
                "temporal_coverage": temporal_coverage,
                "issues": issues,
            }

        return quality_metrics

    def fit_with_real_data(
        self,
        countries: List[str],
        hs_codes: List[str],
        years: List[int],
        force_refresh: bool = False,
    ) -> "RealDataTIPMModel":
        """
        Train TIPM model using real datasets

        Args:
            countries: Country codes to analyze
            hs_codes: Product codes to analyze
            years: Years of data to use for training
            force_refresh: Force refresh of cached data
        """

        logger.info("Training TIPM with real datasets...")

        # Load real data
        real_datasets = self.load_real_data(countries, hs_codes, years, force_refresh)

        # Check data quality and decide whether to use real data or fall back
        training_data = {}

        for layer_name, dataset_name in [
            ("tariff_shocks", "tariff_shocks"),
            ("trade_flows", "trade_flows"),
            ("industry_responses", "industry_responses"),
            ("firm_responses", "firm_responses"),
            ("consumer_impacts", "consumer_impacts"),
            ("geopolitical_events", "geopolitical_events"),
        ]:

            if (
                dataset_name in real_datasets
                and not real_datasets[dataset_name].empty
                and self.data_quality_metrics.get(dataset_name, {}).get(
                    "quality_score", 0
                )
                > 0.3
            ):

                # Use real data
                training_data[layer_name] = real_datasets[dataset_name]
                logger.info(
                    f"Using real data for {layer_name}: {len(real_datasets[dataset_name])} records"
                )

            elif self.real_data_config.fallback_to_synthetic:
                # Fall back to synthetic data
                training_data[layer_name] = self._generate_fallback_data(
                    layer_name, countries, hs_codes, years
                )
                logger.info(f"Using synthetic fallback for {layer_name}")

            else:
                # No data available
                training_data[layer_name] = pd.DataFrame()
                logger.warning(f"No data available for {layer_name}")

        # Train the model
        self.fit(training_data)

        # Store metadata
        self.model_metadata.update(
            {
                "data_sources": list(real_datasets.keys()),
                "data_quality": self.data_quality_metrics,
                "training_countries": countries,
                "training_hs_codes": hs_codes,
                "training_years": years,
                "last_trained": datetime.now().isoformat(),
            }
        )

        logger.info("Real data training completed")
        return self

    def _generate_fallback_data(
        self,
        layer_name: str,
        countries: List[str],
        hs_codes: List[str],
        years: List[int],
    ) -> pd.DataFrame:
        """Generate synthetic fallback data when real data is unavailable"""

        np.random.seed(42)  # Reproducible synthetic data

        if layer_name == "tariff_shocks":
            return pd.DataFrame(
                {
                    "policy_text": [f"Fallback tariff policy for {hs_codes[0]}"]
                    * len(countries),
                    "effective_date": ["2023-01-01"] * len(countries),
                    "hs_codes": [",".join(hs_codes)] * len(countries),
                    "tariff_rates": np.random.uniform(0.1, 0.3, len(countries)),
                    "countries": [f"{c},US" for c in countries],
                }
            )

        elif layer_name == "trade_flows":
            n_records = len(countries) * len(hs_codes) * len(years)
            return pd.DataFrame(
                {
                    "hs_code": np.tile(hs_codes, len(countries) * len(years)),
                    "origin_country": np.repeat(countries, len(hs_codes) * len(years)),
                    "destination_country": ["US"] * n_records,
                    "trade_value": np.random.lognormal(
                        15, 1, n_records
                    ),  # Realistic trade values
                    "year": np.tile(np.repeat(years, len(hs_codes)), len(countries)),
                    "transport_cost": np.random.uniform(10000, 100000, n_records),
                    "lead_time": np.random.uniform(20, 60, n_records),
                }
            )

        elif layer_name == "industry_responses":
            return pd.DataFrame(
                {
                    "industry_code": ["electronics", "manufacturing", "services"],
                    "response_metric": np.random.normal(0.1, 0.05, 3),
                }
            )

        elif layer_name == "firm_responses":
            return pd.DataFrame(
                {
                    "firm_id": [f"firm_{i}" for i in range(5)],
                    "response_metric": np.random.normal(0.1, 0.05, 5),
                }
            )

        elif layer_name == "consumer_impacts":
            return pd.DataFrame(
                {
                    "product_category": ["electronics", "general_goods"],
                    "price_change": np.random.uniform(0.02, 0.08, 2),
                }
            )

        elif layer_name == "geopolitical_events":
            return pd.DataFrame(
                {"event_text": ["Fallback geopolitical event"], "sentiment": [0.0]}
            )

        return pd.DataFrame()

    def get_data_provenance(self) -> Dict[str, Any]:
        """Get information about data sources and quality"""

        return {
            "last_update": (
                self.last_data_update.isoformat() if self.last_data_update else None
            ),
            "datasets_available": list(self.real_datasets.keys()),
            "data_quality_metrics": self.data_quality_metrics,
            "model_metadata": self.model_metadata,
            "configuration": {
                "cache_directory": self.real_data_config.data_cache_dir,
                "fallback_enabled": self.real_data_config.fallback_to_synthetic,
                "quality_thresholds": {
                    "min_data_points": self.real_data_config.min_data_points,
                    "min_trade_coverage": self.real_data_config.min_trade_coverage,
                    "max_missing_data_ratio": self.real_data_config.max_missing_data_ratio,
                },
            },
        }


# Usage example
if __name__ == "__main__":
    # Test real data integration
    real_model = RealDataTIPMModel()

    # Train with real data for US-China electronics trade
    real_model.fit_with_real_data(
        countries=["840", "156"],  # US, China
        hs_codes=["8517", "8471"],  # Telecom, computers
        years=[2022, 2023, 2024],
    )

    # Get data provenance
    provenance = real_model.get_data_provenance()
    print("Data Provenance:")
    print(json.dumps(provenance, indent=2))