thegeekybeng's picture
πŸš€ Deploy TIPM v1.5 - Professional Economic Intelligence Platform
8986ff6
"""
Base ML Model Classes for TIPM
==============================
Foundation classes and interfaces for all ML models in the TIPM system.
"""
import logging
from abc import ABC, abstractmethod
from typing import Dict, List, Optional, Any, Union, Tuple
from dataclasses import dataclass, field
from datetime import datetime
from enum import Enum
import json
import pickle
from pathlib import Path
import numpy as np
import pandas as pd
from sklearn.base import BaseEstimator
from sklearn.metrics import classification_report, mean_squared_error, r2_score
logger = logging.getLogger(__name__)
class ModelType(Enum):
"""Types of ML models supported by TIPM"""
# Classification models
CLASSIFICATION = "classification"
MULTI_CLASS = "multi_class"
BINARY = "binary"
# Regression models
REGRESSION = "regression"
TIME_SERIES = "time_series"
# Forecasting models
FORECASTING = "forecasting"
SEQUENCE = "sequence"
# Anomaly detection
ANOMALY_DETECTION = "anomaly_detection"
OUTLIER_DETECTION = "outlier_detection"
# Ensemble models
ENSEMBLE = "ensemble"
VOTING = "voting"
STACKING = "stacking"
# Deep learning
NEURAL_NETWORK = "neural_network"
LSTM = "lstm"
TRANSFORMER = "transformer"
class ModelStatus(Enum):
"""Model training and deployment status"""
NOT_TRAINED = "not_trained"
TRAINING = "training"
TRAINED = "trained"
VALIDATING = "validating"
VALIDATED = "validated"
DEPLOYED = "deployed"
FAILED = "failed"
DEPRECATED = "deprecated"
@dataclass
class ModelMetadata:
"""Metadata for ML models"""
model_id: str
name: str
description: str
model_type: ModelType
version: str = "1.0.0"
# Training information
created_at: datetime = field(default_factory=datetime.now)
last_trained: Optional[datetime] = None
training_duration: Optional[float] = None # seconds
# Performance metrics
training_score: Optional[float] = None
validation_score: Optional[float] = None
test_score: Optional[float] = None
# Model characteristics
feature_count: int = 0
sample_count: int = 0
hyperparameters: Dict[str, Any] = field(default_factory=dict)
# Status and deployment
status: ModelStatus = ModelStatus.NOT_TRAINED
is_deployed: bool = False
deployment_date: Optional[datetime] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for storage"""
return {
"model_id": self.model_id,
"name": self.name,
"description": self.description,
"model_type": self.model_type.value,
"version": self.version,
"created_at": self.created_at.isoformat(),
"last_trained": (
self.last_trained.isoformat() if self.last_trained else None
),
"training_duration": self.training_duration,
"training_score": self.training_score,
"validation_score": self.validation_score,
"test_score": self.test_score,
"feature_count": self.feature_count,
"sample_count": self.sample_count,
"hyperparameters": self.hyperparameters,
"status": self.status.value,
"is_deployed": self.is_deployed,
"deployment_date": (
self.deployment_date.isoformat() if self.deployment_date else None
),
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "ModelMetadata":
"""Create from dictionary"""
return cls(
model_id=data["model_id"],
name=data["name"],
description=data["description"],
model_type=ModelType(data["model_type"]),
version=data.get("version", "1.0.0"),
created_at=(
datetime.fromisoformat(data["created_at"])
if data.get("created_at")
else datetime.now()
),
last_trained=(
datetime.fromisoformat(data["last_trained"])
if data.get("last_trained")
else None
),
training_duration=data.get("training_duration"),
training_score=data.get("training_score"),
validation_score=data.get("validation_score"),
test_score=data.get("test_score"),
feature_count=data.get("feature_count", 0),
sample_count=data.get("sample_count", 0),
hyperparameters=data.get("hyperparameters", {}),
status=ModelStatus(data.get("status", "not_trained")),
is_deployed=data.get("is_deployed", False),
deployment_date=(
datetime.fromisoformat(data["deployment_date"])
if data.get("deployment_date")
else None
),
)
@dataclass
class PredictionResult:
"""Result of a model prediction"""
prediction_id: str
model_id: str
timestamp: datetime
# Prediction outputs
predictions: Union[np.ndarray, List, float]
probabilities: Optional[np.ndarray] = None
confidence_scores: Optional[np.ndarray] = None
# Input features
input_features: Optional[Dict[str, Any]] = None
feature_names: Optional[List[str]] = None
# Metadata
prediction_type: str = "unknown"
processing_time: Optional[float] = None # seconds
# Quality indicators
confidence_threshold: float = 0.5
is_high_confidence: bool = False
def __post_init__(self):
"""Post-initialization processing"""
if self.probabilities is not None and self.confidence_scores is None:
# Calculate confidence scores from probabilities
if isinstance(self.probabilities, np.ndarray):
self.confidence_scores = (
np.max(self.probabilities, axis=1)
if self.probabilities.ndim > 1
else self.probabilities
)
else:
self.confidence_scores = np.array(
[
max(p) if isinstance(p, (list, np.ndarray)) else p
for p in self.probabilities
]
)
# Determine high confidence predictions
if self.confidence_scores is not None:
if isinstance(self.confidence_scores, np.ndarray):
self.is_high_confidence = np.all(
self.confidence_scores >= self.confidence_threshold
)
else:
self.is_high_confidence = (
self.confidence_scores >= self.confidence_threshold
)
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary"""
return {
"prediction_id": self.prediction_id,
"model_id": self.model_id,
"timestamp": self.timestamp.isoformat(),
"predictions": (
self.predictions.tolist()
if isinstance(self.predictions, np.ndarray)
else self.predictions
),
"probabilities": (
self.probabilities.tolist()
if isinstance(self.probabilities, np.ndarray)
else self.probabilities
),
"confidence_scores": (
self.confidence_scores.tolist()
if isinstance(self.confidence_scores, np.ndarray)
else self.confidence_scores
),
"input_features": self.input_features,
"feature_names": self.feature_names,
"prediction_type": self.prediction_type,
"processing_time": self.processing_time,
"confidence_threshold": self.confidence_threshold,
"is_high_confidence": self.is_high_confidence,
}
@dataclass
class TrainingResult:
"""Result of model training"""
model_id: str
training_start: datetime
training_end: datetime
# Training metrics
training_score: float
validation_score: float
test_score: Optional[float] = None
# Training details
epochs: Optional[int] = None
batch_size: Optional[int] = None
learning_rate: Optional[float] = None
# Performance metrics
loss_history: Optional[List[float]] = None
accuracy_history: Optional[List[float]] = None
# Model characteristics
model_size_mb: Optional[float] = None
parameters_count: Optional[int] = None
# Quality indicators
overfitting_detected: bool = False
convergence_achieved: bool = True
@property
def training_duration(self) -> float:
"""Calculate training duration in seconds"""
return (self.training_end - self.training_start).total_seconds()
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary"""
return {
"model_id": self.model_id,
"training_start": self.training_start.isoformat(),
"training_end": self.training_end.isoformat(),
"training_duration": self.training_duration,
"training_score": self.training_score,
"validation_score": self.validation_score,
"test_score": self.test_score,
"epochs": self.epochs,
"batch_size": self.batch_size,
"learning_rate": self.learning_rate,
"loss_history": self.loss_history,
"accuracy_history": self.accuracy_history,
"model_size_mb": self.model_size_mb,
"parameters_count": self.parameters_count,
"overfitting_detected": self.overfitting_detected,
"convergence_achieved": self.convergence_achieved,
}
class BaseMLModel(ABC, BaseEstimator):
"""
Base class for all ML models in TIPM
Provides common interface and functionality for training, prediction,
and model management.
"""
def __init__(
self, model_id: str, name: str, description: str, model_type: ModelType
):
"""
Initialize base ML model
Args:
model_id: Unique identifier for the model
name: Human-readable name
description: Model description
model_type: Type of ML model
"""
self.model_id = model_id
self.name = name
self.description = description
self.model_type = model_type
# Initialize metadata
self.metadata = ModelMetadata(
model_id=model_id, name=name, description=description, model_type=model_type
)
# Model state
self._model = None
self._is_trained = False
self._feature_names = None
self._target_names = None
# Training history
self.training_history: List[TrainingResult] = []
logger.info(f"Initialized {model_type.value} model: {name} ({model_id})")
@abstractmethod
def _create_model(self) -> Any:
"""
Create the underlying ML model
Returns:
The ML model instance
"""
pass
@abstractmethod
def _prepare_features(self, X: Union[pd.DataFrame, np.ndarray]) -> np.ndarray:
"""
Prepare features for the model
Args:
X: Input features
Returns:
Prepared features array
"""
pass
@abstractmethod
def _prepare_targets(self, y: Union[pd.Series, np.ndarray]) -> np.ndarray:
"""
Prepare target variables for the model
Args:
y: Target variables
Returns:
Prepared targets array
"""
pass
def fit(
self,
X: Union[pd.DataFrame, np.ndarray],
y: Union[pd.Series, np.ndarray],
**kwargs,
) -> "BaseMLModel":
"""
Train the model
Args:
X: Training features
y: Training targets
**kwargs: Additional training parameters
Returns:
Self for method chaining
"""
training_start = datetime.now()
try:
logger.info(f"Starting training for model {self.model_id}")
# Update status
self.metadata.status = ModelStatus.TRAINING
# Store feature and target names
if hasattr(X, "columns"):
self._feature_names = list(X.columns)
if hasattr(y, "name"):
self._target_names = [y.name]
# Prepare data
X_prepared = self._prepare_features(X)
y_prepared = self._prepare_targets(y)
# Create and train model
self._model = self._create_model()
self._model.fit(X_prepared, y_prepared, **kwargs)
# Update metadata
self._is_trained = True
self.metadata.status = ModelStatus.TRAINED
self.metadata.last_trained = datetime.now()
self.metadata.feature_count = X_prepared.shape[1]
self.metadata.sample_count = X_prepared.shape[0]
# Calculate training score
training_score = (
self._model.score(X_prepared, y_prepared)
if hasattr(self._model, "score")
else None
)
self.metadata.training_score = training_score
# Create training result
training_result = TrainingResult(
model_id=self.model_id,
training_start=training_start,
training_end=datetime.now(),
training_score=training_score or 0.0,
validation_score=0.0, # Will be updated during validation
)
self.training_history.append(training_result)
logger.info(f"Training completed for model {self.model_id}")
return self
except Exception as e:
self.metadata.status = ModelStatus.FAILED
logger.error(f"Training failed for model {self.model_id}: {e}")
raise
def predict(self, X: Union[pd.DataFrame, np.ndarray]) -> PredictionResult:
"""
Make predictions using the trained model
Args:
X: Input features
Returns:
PredictionResult with predictions and metadata
"""
if not self._is_trained:
raise RuntimeError(
f"Model {self.model_id} must be trained before making predictions"
)
prediction_start = datetime.now()
try:
# Prepare features
X_prepared = self._prepare_features(X)
# Make predictions
predictions = self._model.predict(X_prepared)
# Get probabilities if available
probabilities = None
if hasattr(self._model, "predict_proba"):
probabilities = self._model.predict_proba(X_prepared)
# Calculate processing time
processing_time = (datetime.now() - prediction_start).total_seconds()
# Create prediction result
result = PredictionResult(
prediction_id=f"{self.model_id}_{prediction_start.strftime('%Y%m%d_%H%M%S')}",
model_id=self.model_id,
timestamp=prediction_start,
predictions=predictions,
probabilities=probabilities,
input_features=X.to_dict() if hasattr(X, "to_dict") else None,
feature_names=self._feature_names,
prediction_type=self.model_type.value,
processing_time=processing_time,
)
return result
except Exception as e:
logger.error(f"Prediction failed for model {self.model_id}: {e}")
raise
def validate(
self,
X_val: Union[pd.DataFrame, np.ndarray],
y_val: Union[pd.Series, np.ndarray],
) -> float:
"""
Validate the model on validation data
Args:
X_val: Validation features
y_val: Validation targets
Returns:
Validation score
"""
if not self._is_trained:
raise RuntimeError(
f"Model {self.model_id} must be trained before validation"
)
try:
# Prepare data
X_val_prepared = self._prepare_features(X_val)
y_val_prepared = self._prepare_targets(y_val)
# Make predictions
y_pred = self._model.predict(X_val_prepared)
# Calculate validation score
if self.model_type in [
ModelType.CLASSIFICATION,
ModelType.MULTI_CLASS,
ModelType.BINARY,
]:
validation_score = self._model.score(X_val_prepared, y_val_prepared)
else:
validation_score = r2_score(y_val_prepared, y_pred)
# Update metadata
self.metadata.validation_score = validation_score
# Update latest training result
if self.training_history:
self.training_history[-1].validation_score = validation_score
logger.info(
f"Validation completed for model {self.model_id}: {validation_score:.4f}"
)
return validation_score
except Exception as e:
logger.error(f"Validation failed for model {self.model_id}: {e}")
raise
def evaluate(
self,
X_test: Union[pd.DataFrame, np.ndarray],
y_test: Union[pd.Series, np.ndarray],
) -> Dict[str, Any]:
"""
Evaluate the model on test data
Args:
X_test: Test features
y_test: Test targets
Returns:
Dictionary with evaluation metrics
"""
if not self._is_trained:
raise RuntimeError(
f"Model {self.model_id} must be trained before evaluation"
)
try:
# Prepare data
X_test_prepared = self._prepare_features(X_test)
y_test_prepared = self._prepare_targets(y_test)
# Make predictions
y_pred = self._model.predict(X_test_prepared)
# Calculate metrics
if self.model_type in [
ModelType.CLASSIFICATION,
ModelType.MULTI_CLASS,
ModelType.BINARY,
]:
# Classification metrics
metrics = {
"accuracy": self._model.score(X_test_prepared, y_test_prepared),
"classification_report": classification_report(
y_test_prepared, y_pred, output_dict=True
),
}
else:
# Regression metrics
metrics = {
"r2_score": r2_score(y_test_prepared, y_pred),
"mse": mean_squared_error(y_test_prepared, y_pred),
"rmse": np.sqrt(mean_squared_error(y_test_prepared, y_pred)),
}
# Update metadata
self.metadata.test_score = metrics.get("accuracy", metrics.get("r2_score"))
# Update latest training result
if self.training_history:
self.training_history[-1].test_score = self.metadata.test_score
logger.info(f"Evaluation completed for model {self.model_id}")
return metrics
except Exception as e:
logger.error(f"Evaluation failed for model {self.model_id}: {e}")
raise
def save_model(self, filepath: Union[str, Path]) -> None:
"""
Save the trained model to disk
Args:
filepath: Path to save the model
"""
if not self._is_trained:
raise RuntimeError(f"Model {self.model_id} must be trained before saving")
try:
filepath = Path(filepath)
filepath.parent.mkdir(parents=True, exist_ok=True)
# Save the model
with open(filepath, "wb") as f:
pickle.dump(self, f)
# Save metadata separately
metadata_path = filepath.with_suffix(".json")
with open(metadata_path, "w") as f:
json.dump(self.metadata.to_dict(), f, indent=2)
logger.info(f"Model {self.model_id} saved to {filepath}")
except Exception as e:
logger.error(f"Failed to save model {self.model_id}: {e}")
raise
@classmethod
def load_model(cls, filepath: Union[str, Path]) -> "BaseMLModel":
"""
Load a trained model from disk
Args:
filepath: Path to the saved model
Returns:
Loaded model instance
"""
try:
filepath = Path(filepath)
with open(filepath, "rb") as f:
model = pickle.load(f)
logger.info(f"Model {model.model_id} loaded from {filepath}")
return model
except Exception as e:
logger.error(f"Failed to load model from {filepath}: {e}")
raise
def get_feature_importance(self) -> Optional[Dict[str, float]]:
"""
Get feature importance scores if available
Returns:
Dictionary mapping feature names to importance scores, or None if not available
"""
if not self._is_trained or self._feature_names is None:
return None
try:
if hasattr(self._model, "feature_importances_"):
importance_scores = self._model.feature_importances_
elif hasattr(self._model, "coef_"):
importance_scores = np.abs(self._model.coef_)
if importance_scores.ndim > 1:
importance_scores = np.mean(importance_scores, axis=0)
else:
return None
return dict(zip(self._feature_names, importance_scores))
except Exception as e:
logger.warning(
f"Could not extract feature importance for model {self.model_id}: {e}"
)
return None
def get_model_summary(self) -> Dict[str, Any]:
"""
Get a summary of the model
Returns:
Dictionary with model summary information
"""
return {
"model_id": self.model_id,
"name": self.name,
"description": self.description,
"model_type": self.model_type.value,
"status": self.metadata.status.value,
"is_trained": self._is_trained,
"feature_count": self.metadata.feature_count,
"sample_count": self.metadata.sample_count,
"training_score": self.metadata.training_score,
"validation_score": self.metadata.validation_score,
"test_score": self.metadata.test_score,
"last_trained": (
self.metadata.last_trained.isoformat()
if self.metadata.last_trained
else None
),
"training_count": len(self.training_history),
}
def __repr__(self) -> str:
"""String representation of the model"""
return f"{self.__class__.__name__}(model_id='{self.model_id}', name='{self.name}', type='{self.model_type.value}')"