File size: 23,338 Bytes
8986ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
"""
Base ML Model Classes for TIPM
==============================

Foundation classes and interfaces for all ML models in the TIPM system.
"""

import logging
from abc import ABC, abstractmethod
from typing import Dict, List, Optional, Any, Union, Tuple
from dataclasses import dataclass, field
from datetime import datetime
from enum import Enum
import json
import pickle
from pathlib import Path

import numpy as np
import pandas as pd
from sklearn.base import BaseEstimator
from sklearn.metrics import classification_report, mean_squared_error, r2_score

logger = logging.getLogger(__name__)


class ModelType(Enum):
    """Types of ML models supported by TIPM"""

    # Classification models
    CLASSIFICATION = "classification"
    MULTI_CLASS = "multi_class"
    BINARY = "binary"

    # Regression models
    REGRESSION = "regression"
    TIME_SERIES = "time_series"

    # Forecasting models
    FORECASTING = "forecasting"
    SEQUENCE = "sequence"

    # Anomaly detection
    ANOMALY_DETECTION = "anomaly_detection"
    OUTLIER_DETECTION = "outlier_detection"

    # Ensemble models
    ENSEMBLE = "ensemble"
    VOTING = "voting"
    STACKING = "stacking"

    # Deep learning
    NEURAL_NETWORK = "neural_network"
    LSTM = "lstm"
    TRANSFORMER = "transformer"


class ModelStatus(Enum):
    """Model training and deployment status"""

    NOT_TRAINED = "not_trained"
    TRAINING = "training"
    TRAINED = "trained"
    VALIDATING = "validating"
    VALIDATED = "validated"
    DEPLOYED = "deployed"
    FAILED = "failed"
    DEPRECATED = "deprecated"


@dataclass
class ModelMetadata:
    """Metadata for ML models"""

    model_id: str
    name: str
    description: str
    model_type: ModelType
    version: str = "1.0.0"

    # Training information
    created_at: datetime = field(default_factory=datetime.now)
    last_trained: Optional[datetime] = None
    training_duration: Optional[float] = None  # seconds

    # Performance metrics
    training_score: Optional[float] = None
    validation_score: Optional[float] = None
    test_score: Optional[float] = None

    # Model characteristics
    feature_count: int = 0
    sample_count: int = 0
    hyperparameters: Dict[str, Any] = field(default_factory=dict)

    # Status and deployment
    status: ModelStatus = ModelStatus.NOT_TRAINED
    is_deployed: bool = False
    deployment_date: Optional[datetime] = None

    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary for storage"""
        return {
            "model_id": self.model_id,
            "name": self.name,
            "description": self.description,
            "model_type": self.model_type.value,
            "version": self.version,
            "created_at": self.created_at.isoformat(),
            "last_trained": (
                self.last_trained.isoformat() if self.last_trained else None
            ),
            "training_duration": self.training_duration,
            "training_score": self.training_score,
            "validation_score": self.validation_score,
            "test_score": self.test_score,
            "feature_count": self.feature_count,
            "sample_count": self.sample_count,
            "hyperparameters": self.hyperparameters,
            "status": self.status.value,
            "is_deployed": self.is_deployed,
            "deployment_date": (
                self.deployment_date.isoformat() if self.deployment_date else None
            ),
        }

    @classmethod
    def from_dict(cls, data: Dict[str, Any]) -> "ModelMetadata":
        """Create from dictionary"""
        return cls(
            model_id=data["model_id"],
            name=data["name"],
            description=data["description"],
            model_type=ModelType(data["model_type"]),
            version=data.get("version", "1.0.0"),
            created_at=(
                datetime.fromisoformat(data["created_at"])
                if data.get("created_at")
                else datetime.now()
            ),
            last_trained=(
                datetime.fromisoformat(data["last_trained"])
                if data.get("last_trained")
                else None
            ),
            training_duration=data.get("training_duration"),
            training_score=data.get("training_score"),
            validation_score=data.get("validation_score"),
            test_score=data.get("test_score"),
            feature_count=data.get("feature_count", 0),
            sample_count=data.get("sample_count", 0),
            hyperparameters=data.get("hyperparameters", {}),
            status=ModelStatus(data.get("status", "not_trained")),
            is_deployed=data.get("is_deployed", False),
            deployment_date=(
                datetime.fromisoformat(data["deployment_date"])
                if data.get("deployment_date")
                else None
            ),
        )


@dataclass
class PredictionResult:
    """Result of a model prediction"""

    prediction_id: str
    model_id: str
    timestamp: datetime

    # Prediction outputs
    predictions: Union[np.ndarray, List, float]
    probabilities: Optional[np.ndarray] = None
    confidence_scores: Optional[np.ndarray] = None

    # Input features
    input_features: Optional[Dict[str, Any]] = None
    feature_names: Optional[List[str]] = None

    # Metadata
    prediction_type: str = "unknown"
    processing_time: Optional[float] = None  # seconds

    # Quality indicators
    confidence_threshold: float = 0.5
    is_high_confidence: bool = False

    def __post_init__(self):
        """Post-initialization processing"""
        if self.probabilities is not None and self.confidence_scores is None:
            # Calculate confidence scores from probabilities
            if isinstance(self.probabilities, np.ndarray):
                self.confidence_scores = (
                    np.max(self.probabilities, axis=1)
                    if self.probabilities.ndim > 1
                    else self.probabilities
                )
            else:
                self.confidence_scores = np.array(
                    [
                        max(p) if isinstance(p, (list, np.ndarray)) else p
                        for p in self.probabilities
                    ]
                )

        # Determine high confidence predictions
        if self.confidence_scores is not None:
            if isinstance(self.confidence_scores, np.ndarray):
                self.is_high_confidence = np.all(
                    self.confidence_scores >= self.confidence_threshold
                )
            else:
                self.is_high_confidence = (
                    self.confidence_scores >= self.confidence_threshold
                )

    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary"""
        return {
            "prediction_id": self.prediction_id,
            "model_id": self.model_id,
            "timestamp": self.timestamp.isoformat(),
            "predictions": (
                self.predictions.tolist()
                if isinstance(self.predictions, np.ndarray)
                else self.predictions
            ),
            "probabilities": (
                self.probabilities.tolist()
                if isinstance(self.probabilities, np.ndarray)
                else self.probabilities
            ),
            "confidence_scores": (
                self.confidence_scores.tolist()
                if isinstance(self.confidence_scores, np.ndarray)
                else self.confidence_scores
            ),
            "input_features": self.input_features,
            "feature_names": self.feature_names,
            "prediction_type": self.prediction_type,
            "processing_time": self.processing_time,
            "confidence_threshold": self.confidence_threshold,
            "is_high_confidence": self.is_high_confidence,
        }


@dataclass
class TrainingResult:
    """Result of model training"""

    model_id: str
    training_start: datetime
    training_end: datetime

    # Training metrics
    training_score: float
    validation_score: float
    test_score: Optional[float] = None

    # Training details
    epochs: Optional[int] = None
    batch_size: Optional[int] = None
    learning_rate: Optional[float] = None

    # Performance metrics
    loss_history: Optional[List[float]] = None
    accuracy_history: Optional[List[float]] = None

    # Model characteristics
    model_size_mb: Optional[float] = None
    parameters_count: Optional[int] = None

    # Quality indicators
    overfitting_detected: bool = False
    convergence_achieved: bool = True

    @property
    def training_duration(self) -> float:
        """Calculate training duration in seconds"""
        return (self.training_end - self.training_start).total_seconds()

    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary"""
        return {
            "model_id": self.model_id,
            "training_start": self.training_start.isoformat(),
            "training_end": self.training_end.isoformat(),
            "training_duration": self.training_duration,
            "training_score": self.training_score,
            "validation_score": self.validation_score,
            "test_score": self.test_score,
            "epochs": self.epochs,
            "batch_size": self.batch_size,
            "learning_rate": self.learning_rate,
            "loss_history": self.loss_history,
            "accuracy_history": self.accuracy_history,
            "model_size_mb": self.model_size_mb,
            "parameters_count": self.parameters_count,
            "overfitting_detected": self.overfitting_detected,
            "convergence_achieved": self.convergence_achieved,
        }


class BaseMLModel(ABC, BaseEstimator):
    """
    Base class for all ML models in TIPM

    Provides common interface and functionality for training, prediction,
    and model management.
    """

    def __init__(
        self, model_id: str, name: str, description: str, model_type: ModelType
    ):
        """
        Initialize base ML model

        Args:
            model_id: Unique identifier for the model
            name: Human-readable name
            description: Model description
            model_type: Type of ML model
        """
        self.model_id = model_id
        self.name = name
        self.description = description
        self.model_type = model_type

        # Initialize metadata
        self.metadata = ModelMetadata(
            model_id=model_id, name=name, description=description, model_type=model_type
        )

        # Model state
        self._model = None
        self._is_trained = False
        self._feature_names = None
        self._target_names = None

        # Training history
        self.training_history: List[TrainingResult] = []

        logger.info(f"Initialized {model_type.value} model: {name} ({model_id})")

    @abstractmethod
    def _create_model(self) -> Any:
        """
        Create the underlying ML model

        Returns:
            The ML model instance
        """
        pass

    @abstractmethod
    def _prepare_features(self, X: Union[pd.DataFrame, np.ndarray]) -> np.ndarray:
        """
        Prepare features for the model

        Args:
            X: Input features

        Returns:
            Prepared features array
        """
        pass

    @abstractmethod
    def _prepare_targets(self, y: Union[pd.Series, np.ndarray]) -> np.ndarray:
        """
        Prepare target variables for the model

        Args:
            y: Target variables

        Returns:
            Prepared targets array
        """
        pass

    def fit(
        self,
        X: Union[pd.DataFrame, np.ndarray],
        y: Union[pd.Series, np.ndarray],
        **kwargs,
    ) -> "BaseMLModel":
        """
        Train the model

        Args:
            X: Training features
            y: Training targets
            **kwargs: Additional training parameters

        Returns:
            Self for method chaining
        """
        training_start = datetime.now()

        try:
            logger.info(f"Starting training for model {self.model_id}")

            # Update status
            self.metadata.status = ModelStatus.TRAINING

            # Store feature and target names
            if hasattr(X, "columns"):
                self._feature_names = list(X.columns)
            if hasattr(y, "name"):
                self._target_names = [y.name]

            # Prepare data
            X_prepared = self._prepare_features(X)
            y_prepared = self._prepare_targets(y)

            # Create and train model
            self._model = self._create_model()
            self._model.fit(X_prepared, y_prepared, **kwargs)

            # Update metadata
            self._is_trained = True
            self.metadata.status = ModelStatus.TRAINED
            self.metadata.last_trained = datetime.now()
            self.metadata.feature_count = X_prepared.shape[1]
            self.metadata.sample_count = X_prepared.shape[0]

            # Calculate training score
            training_score = (
                self._model.score(X_prepared, y_prepared)
                if hasattr(self._model, "score")
                else None
            )
            self.metadata.training_score = training_score

            # Create training result
            training_result = TrainingResult(
                model_id=self.model_id,
                training_start=training_start,
                training_end=datetime.now(),
                training_score=training_score or 0.0,
                validation_score=0.0,  # Will be updated during validation
            )

            self.training_history.append(training_result)

            logger.info(f"Training completed for model {self.model_id}")
            return self

        except Exception as e:
            self.metadata.status = ModelStatus.FAILED
            logger.error(f"Training failed for model {self.model_id}: {e}")
            raise

    def predict(self, X: Union[pd.DataFrame, np.ndarray]) -> PredictionResult:
        """
        Make predictions using the trained model

        Args:
            X: Input features

        Returns:
            PredictionResult with predictions and metadata
        """
        if not self._is_trained:
            raise RuntimeError(
                f"Model {self.model_id} must be trained before making predictions"
            )

        prediction_start = datetime.now()

        try:
            # Prepare features
            X_prepared = self._prepare_features(X)

            # Make predictions
            predictions = self._model.predict(X_prepared)

            # Get probabilities if available
            probabilities = None
            if hasattr(self._model, "predict_proba"):
                probabilities = self._model.predict_proba(X_prepared)

            # Calculate processing time
            processing_time = (datetime.now() - prediction_start).total_seconds()

            # Create prediction result
            result = PredictionResult(
                prediction_id=f"{self.model_id}_{prediction_start.strftime('%Y%m%d_%H%M%S')}",
                model_id=self.model_id,
                timestamp=prediction_start,
                predictions=predictions,
                probabilities=probabilities,
                input_features=X.to_dict() if hasattr(X, "to_dict") else None,
                feature_names=self._feature_names,
                prediction_type=self.model_type.value,
                processing_time=processing_time,
            )

            return result

        except Exception as e:
            logger.error(f"Prediction failed for model {self.model_id}: {e}")
            raise

    def validate(
        self,
        X_val: Union[pd.DataFrame, np.ndarray],
        y_val: Union[pd.Series, np.ndarray],
    ) -> float:
        """
        Validate the model on validation data

        Args:
            X_val: Validation features
            y_val: Validation targets

        Returns:
            Validation score
        """
        if not self._is_trained:
            raise RuntimeError(
                f"Model {self.model_id} must be trained before validation"
            )

        try:
            # Prepare data
            X_val_prepared = self._prepare_features(X_val)
            y_val_prepared = self._prepare_targets(y_val)

            # Make predictions
            y_pred = self._model.predict(X_val_prepared)

            # Calculate validation score
            if self.model_type in [
                ModelType.CLASSIFICATION,
                ModelType.MULTI_CLASS,
                ModelType.BINARY,
            ]:
                validation_score = self._model.score(X_val_prepared, y_val_prepared)
            else:
                validation_score = r2_score(y_val_prepared, y_pred)

            # Update metadata
            self.metadata.validation_score = validation_score

            # Update latest training result
            if self.training_history:
                self.training_history[-1].validation_score = validation_score

            logger.info(
                f"Validation completed for model {self.model_id}: {validation_score:.4f}"
            )
            return validation_score

        except Exception as e:
            logger.error(f"Validation failed for model {self.model_id}: {e}")
            raise

    def evaluate(
        self,
        X_test: Union[pd.DataFrame, np.ndarray],
        y_test: Union[pd.Series, np.ndarray],
    ) -> Dict[str, Any]:
        """
        Evaluate the model on test data

        Args:
            X_test: Test features
            y_test: Test targets

        Returns:
            Dictionary with evaluation metrics
        """
        if not self._is_trained:
            raise RuntimeError(
                f"Model {self.model_id} must be trained before evaluation"
            )

        try:
            # Prepare data
            X_test_prepared = self._prepare_features(X_test)
            y_test_prepared = self._prepare_targets(y_test)

            # Make predictions
            y_pred = self._model.predict(X_test_prepared)

            # Calculate metrics
            if self.model_type in [
                ModelType.CLASSIFICATION,
                ModelType.MULTI_CLASS,
                ModelType.BINARY,
            ]:
                # Classification metrics
                metrics = {
                    "accuracy": self._model.score(X_test_prepared, y_test_prepared),
                    "classification_report": classification_report(
                        y_test_prepared, y_pred, output_dict=True
                    ),
                }
            else:
                # Regression metrics
                metrics = {
                    "r2_score": r2_score(y_test_prepared, y_pred),
                    "mse": mean_squared_error(y_test_prepared, y_pred),
                    "rmse": np.sqrt(mean_squared_error(y_test_prepared, y_pred)),
                }

            # Update metadata
            self.metadata.test_score = metrics.get("accuracy", metrics.get("r2_score"))

            # Update latest training result
            if self.training_history:
                self.training_history[-1].test_score = self.metadata.test_score

            logger.info(f"Evaluation completed for model {self.model_id}")
            return metrics

        except Exception as e:
            logger.error(f"Evaluation failed for model {self.model_id}: {e}")
            raise

    def save_model(self, filepath: Union[str, Path]) -> None:
        """
        Save the trained model to disk

        Args:
            filepath: Path to save the model
        """
        if not self._is_trained:
            raise RuntimeError(f"Model {self.model_id} must be trained before saving")

        try:
            filepath = Path(filepath)
            filepath.parent.mkdir(parents=True, exist_ok=True)

            # Save the model
            with open(filepath, "wb") as f:
                pickle.dump(self, f)

            # Save metadata separately
            metadata_path = filepath.with_suffix(".json")
            with open(metadata_path, "w") as f:
                json.dump(self.metadata.to_dict(), f, indent=2)

            logger.info(f"Model {self.model_id} saved to {filepath}")

        except Exception as e:
            logger.error(f"Failed to save model {self.model_id}: {e}")
            raise

    @classmethod
    def load_model(cls, filepath: Union[str, Path]) -> "BaseMLModel":
        """
        Load a trained model from disk

        Args:
            filepath: Path to the saved model

        Returns:
            Loaded model instance
        """
        try:
            filepath = Path(filepath)

            with open(filepath, "rb") as f:
                model = pickle.load(f)

            logger.info(f"Model {model.model_id} loaded from {filepath}")
            return model

        except Exception as e:
            logger.error(f"Failed to load model from {filepath}: {e}")
            raise

    def get_feature_importance(self) -> Optional[Dict[str, float]]:
        """
        Get feature importance scores if available

        Returns:
            Dictionary mapping feature names to importance scores, or None if not available
        """
        if not self._is_trained or self._feature_names is None:
            return None

        try:
            if hasattr(self._model, "feature_importances_"):
                importance_scores = self._model.feature_importances_
            elif hasattr(self._model, "coef_"):
                importance_scores = np.abs(self._model.coef_)
                if importance_scores.ndim > 1:
                    importance_scores = np.mean(importance_scores, axis=0)
            else:
                return None

            return dict(zip(self._feature_names, importance_scores))

        except Exception as e:
            logger.warning(
                f"Could not extract feature importance for model {self.model_id}: {e}"
            )
            return None

    def get_model_summary(self) -> Dict[str, Any]:
        """
        Get a summary of the model

        Returns:
            Dictionary with model summary information
        """
        return {
            "model_id": self.model_id,
            "name": self.name,
            "description": self.description,
            "model_type": self.model_type.value,
            "status": self.metadata.status.value,
            "is_trained": self._is_trained,
            "feature_count": self.metadata.feature_count,
            "sample_count": self.metadata.sample_count,
            "training_score": self.metadata.training_score,
            "validation_score": self.metadata.validation_score,
            "test_score": self.metadata.test_score,
            "last_trained": (
                self.metadata.last_trained.isoformat()
                if self.metadata.last_trained
                else None
            ),
            "training_count": len(self.training_history),
        }

    def __repr__(self) -> str:
        """String representation of the model"""
        return f"{self.__class__.__name__}(model_id='{self.model_id}', name='{self.name}', type='{self.model_type.value}')"