thegeekybeng's picture
πŸš€ Deploy TIPM v1.5 - Professional Economic Intelligence Platform
8986ff6
"""
Configuration management for TIPM layers
"""
from dataclasses import dataclass
from typing import Dict, Any, Optional, List
from pydantic import BaseModel, Field, validator
class PolicyLayerConfig(BaseModel):
"""Configuration for Policy Trigger Layer"""
model_name: str = Field(
default="distilbert-base-uncased", description="NLP model for policy analysis"
)
max_text_length: int = Field(default=512, ge=128, le=1024)
tfidf_max_features: int = Field(default=1000, ge=100, le=10000)
urgency_threshold: float = Field(default=0.7, ge=0.0, le=1.0)
similarity_threshold: float = Field(default=0.8, ge=0.0, le=1.0)
class TradeFlowConfig(BaseModel):
"""Configuration for Trade Flow Layer"""
graph_embedding_dim: int = Field(default=128, ge=32, le=512)
gnn_hidden_dim: int = Field(default=64, ge=16, le=256)
num_gnn_layers: int = Field(default=3, ge=1, le=10)
trade_volume_threshold: float = Field(
default=1000000, ge=1000, description="USD threshold"
)
elasticity_default: float = Field(default=0.5, ge=0.0, le=2.0)
class IndustryConfig(BaseModel):
"""Configuration for Industry Response Layer"""
num_sectors: int = Field(default=20, ge=5, le=100)
response_time_horizon: int = Field(default=12, ge=1, le=60, description="months")
substitution_elasticity: float = Field(default=0.3, ge=0.0, le=1.0)
cost_passthrough_rate: float = Field(default=0.7, ge=0.0, le=1.0)
class FirmConfig(BaseModel):
"""Configuration for Firm Impact Layer"""
firm_size_categories: List[str] = Field(
default_factory=lambda: ["micro", "small", "medium", "large"]
)
employment_elasticity: float = Field(default=0.4, ge=0.0, le=1.0)
adaptation_time_months: int = Field(default=6, ge=1, le=24)
survival_probability_threshold: float = Field(default=0.1, ge=0.0, le=1.0)
class ConsumerConfig(BaseModel):
"""Configuration for Consumer Impact Layer"""
cpi_basket_items: int = Field(default=200, ge=50, le=1000)
demand_elasticity_default: float = Field(default=-0.8, ge=-2.0, le=0.0)
inflation_passthrough_lag: int = Field(default=3, ge=1, le=12, description="months")
income_percentiles: List[int] = Field(default_factory=lambda: [10, 25, 50, 75, 90])
class GeopoliticalConfig(BaseModel):
"""Configuration for Geopolitical Layer"""
sentiment_model: str = Field(
default="cardiffnlp/twitter-roberta-base-sentiment-latest"
)
social_media_sources: List[str] = Field(
default_factory=lambda: ["twitter", "reddit", "news"]
)
event_prediction_horizon: int = Field(default=6, ge=1, le=24, description="months")
instability_threshold: float = Field(default=0.6, ge=0.0, le=1.0)
class TIPMConfig(BaseModel):
"""Main TIPM Model Configuration"""
# Layer configurations
policy_config: Optional[PolicyLayerConfig] = None
trade_flow_config: Optional[TradeFlowConfig] = None
industry_config: Optional[IndustryConfig] = None
firm_config: Optional[FirmConfig] = None
consumer_config: Optional[ConsumerConfig] = None
geopolitical_config: Optional[GeopoliticalConfig] = None
# Global settings
random_seed: int = Field(default=42, ge=0)
model_version: str = Field(default="1.5.0", pattern=r"^\d+\.\d+\.\d+$")
logging_level: str = Field(
default="INFO", pattern=r"^(DEBUG|INFO|WARNING|ERROR|CRITICAL)$"
)
# Data sources
data_update_frequency: str = Field(
default="daily", pattern=r"^(hourly|daily|weekly|monthly)$"
)
cache_duration_hours: int = Field(default=24, ge=1, le=168)
# Performance settings
max_parallel_jobs: int = Field(default=4, ge=1, le=16)
memory_limit_gb: int = Field(default=8, ge=2, le=64)
# Output settings
confidence_threshold: float = Field(default=0.5, ge=0.0, le=1.0)
max_prediction_horizon: int = Field(default=24, ge=1, le=60, description="months")
class Config:
validate_assignment = True
def __init__(self, **data):
super().__init__(**data)
# Initialize layer configs if not provided
if self.policy_config is None:
self.policy_config = PolicyLayerConfig()
if self.trade_flow_config is None:
self.trade_flow_config = TradeFlowConfig()
if self.industry_config is None:
self.industry_config = IndustryConfig()
if self.firm_config is None:
self.firm_config = FirmConfig()
if self.consumer_config is None:
self.consumer_config = ConsumerConfig()
if self.geopolitical_config is None:
self.geopolitical_config = GeopoliticalConfig()
# Country-specific configurations with validated data
COUNTRY_CONFIGS = {
"SG": { # Singapore - 2024 data
"trade_dependency": 0.8,
"import_elasticity": 0.6,
"cpi_weights": {
"food": 0.21,
"transport": 0.15,
"housing": 0.25,
"healthcare": 0.08,
"education": 0.10,
"others": 0.21,
},
"major_trading_partners": ["CHN", "USA", "MYS", "IDN", "JPN"],
"vulnerable_sectors": ["electronics", "petrochemicals", "food_processing"],
},
"US": { # United States - 2024 data
"trade_dependency": 0.3,
"import_elasticity": 0.4,
"cpi_weights": {
"food": 0.14,
"transport": 0.16,
"housing": 0.33,
"healthcare": 0.08,
"education": 0.06,
"others": 0.23,
},
"major_trading_partners": ["CHN", "CAN", "MEX", "JPN", "DEU"],
"vulnerable_sectors": ["manufacturing", "agriculture", "automotive"],
},
"CN": { # China - 2024 data
"trade_dependency": 0.4,
"import_elasticity": 0.5,
"cpi_weights": {
"food": 0.31,
"transport": 0.13,
"housing": 0.23,
"healthcare": 0.09,
"education": 0.08,
"others": 0.16,
},
"major_trading_partners": ["USA", "JPN", "KOR", "DEU", "AUS"],
"vulnerable_sectors": ["manufacturing", "textiles", "electronics"],
},
}
# Sector classification mapping with validated HS codes
SECTOR_MAPPING = {
"agriculture": ["01", "02", "03", "04", "05"], # HS codes
"mining": ["25", "26", "27"],
"food_processing": ["16", "17", "18", "19", "20", "21", "22", "23", "24"],
"textiles": [
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
],
"chemicals": ["28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38"],
"plastics": ["39", "40"],
"wood_paper": ["44", "45", "46", "47", "48", "49"],
"metals": ["72", "73", "74", "75", "76", "78", "79", "80", "81", "82", "83"],
"machinery": ["84", "85"],
"electronics": ["85"],
"automotive": ["87"],
"optical_instruments": ["90", "91", "92"],
}