File size: 7,037 Bytes
8986ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""
Configuration management for TIPM layers
"""

from dataclasses import dataclass
from typing import Dict, Any, Optional, List
from pydantic import BaseModel, Field, validator


class PolicyLayerConfig(BaseModel):
    """Configuration for Policy Trigger Layer"""

    model_name: str = Field(
        default="distilbert-base-uncased", description="NLP model for policy analysis"
    )
    max_text_length: int = Field(default=512, ge=128, le=1024)
    tfidf_max_features: int = Field(default=1000, ge=100, le=10000)
    urgency_threshold: float = Field(default=0.7, ge=0.0, le=1.0)
    similarity_threshold: float = Field(default=0.8, ge=0.0, le=1.0)


class TradeFlowConfig(BaseModel):
    """Configuration for Trade Flow Layer"""

    graph_embedding_dim: int = Field(default=128, ge=32, le=512)
    gnn_hidden_dim: int = Field(default=64, ge=16, le=256)
    num_gnn_layers: int = Field(default=3, ge=1, le=10)
    trade_volume_threshold: float = Field(
        default=1000000, ge=1000, description="USD threshold"
    )
    elasticity_default: float = Field(default=0.5, ge=0.0, le=2.0)


class IndustryConfig(BaseModel):
    """Configuration for Industry Response Layer"""

    num_sectors: int = Field(default=20, ge=5, le=100)
    response_time_horizon: int = Field(default=12, ge=1, le=60, description="months")
    substitution_elasticity: float = Field(default=0.3, ge=0.0, le=1.0)
    cost_passthrough_rate: float = Field(default=0.7, ge=0.0, le=1.0)


class FirmConfig(BaseModel):
    """Configuration for Firm Impact Layer"""

    firm_size_categories: List[str] = Field(
        default_factory=lambda: ["micro", "small", "medium", "large"]
    )
    employment_elasticity: float = Field(default=0.4, ge=0.0, le=1.0)
    adaptation_time_months: int = Field(default=6, ge=1, le=24)
    survival_probability_threshold: float = Field(default=0.1, ge=0.0, le=1.0)


class ConsumerConfig(BaseModel):
    """Configuration for Consumer Impact Layer"""

    cpi_basket_items: int = Field(default=200, ge=50, le=1000)
    demand_elasticity_default: float = Field(default=-0.8, ge=-2.0, le=0.0)
    inflation_passthrough_lag: int = Field(default=3, ge=1, le=12, description="months")
    income_percentiles: List[int] = Field(default_factory=lambda: [10, 25, 50, 75, 90])


class GeopoliticalConfig(BaseModel):
    """Configuration for Geopolitical Layer"""

    sentiment_model: str = Field(
        default="cardiffnlp/twitter-roberta-base-sentiment-latest"
    )
    social_media_sources: List[str] = Field(
        default_factory=lambda: ["twitter", "reddit", "news"]
    )
    event_prediction_horizon: int = Field(default=6, ge=1, le=24, description="months")
    instability_threshold: float = Field(default=0.6, ge=0.0, le=1.0)


class TIPMConfig(BaseModel):
    """Main TIPM Model Configuration"""

    # Layer configurations
    policy_config: Optional[PolicyLayerConfig] = None
    trade_flow_config: Optional[TradeFlowConfig] = None
    industry_config: Optional[IndustryConfig] = None
    firm_config: Optional[FirmConfig] = None
    consumer_config: Optional[ConsumerConfig] = None
    geopolitical_config: Optional[GeopoliticalConfig] = None

    # Global settings
    random_seed: int = Field(default=42, ge=0)
    model_version: str = Field(default="1.5.0", pattern=r"^\d+\.\d+\.\d+$")
    logging_level: str = Field(
        default="INFO", pattern=r"^(DEBUG|INFO|WARNING|ERROR|CRITICAL)$"
    )

    # Data sources
    data_update_frequency: str = Field(
        default="daily", pattern=r"^(hourly|daily|weekly|monthly)$"
    )
    cache_duration_hours: int = Field(default=24, ge=1, le=168)

    # Performance settings
    max_parallel_jobs: int = Field(default=4, ge=1, le=16)
    memory_limit_gb: int = Field(default=8, ge=2, le=64)

    # Output settings
    confidence_threshold: float = Field(default=0.5, ge=0.0, le=1.0)
    max_prediction_horizon: int = Field(default=24, ge=1, le=60, description="months")

    class Config:
        validate_assignment = True

    def __init__(self, **data):
        super().__init__(**data)
        # Initialize layer configs if not provided
        if self.policy_config is None:
            self.policy_config = PolicyLayerConfig()
        if self.trade_flow_config is None:
            self.trade_flow_config = TradeFlowConfig()
        if self.industry_config is None:
            self.industry_config = IndustryConfig()
        if self.firm_config is None:
            self.firm_config = FirmConfig()
        if self.consumer_config is None:
            self.consumer_config = ConsumerConfig()
        if self.geopolitical_config is None:
            self.geopolitical_config = GeopoliticalConfig()


# Country-specific configurations with validated data
COUNTRY_CONFIGS = {
    "SG": {  # Singapore - 2024 data
        "trade_dependency": 0.8,
        "import_elasticity": 0.6,
        "cpi_weights": {
            "food": 0.21,
            "transport": 0.15,
            "housing": 0.25,
            "healthcare": 0.08,
            "education": 0.10,
            "others": 0.21,
        },
        "major_trading_partners": ["CHN", "USA", "MYS", "IDN", "JPN"],
        "vulnerable_sectors": ["electronics", "petrochemicals", "food_processing"],
    },
    "US": {  # United States - 2024 data
        "trade_dependency": 0.3,
        "import_elasticity": 0.4,
        "cpi_weights": {
            "food": 0.14,
            "transport": 0.16,
            "housing": 0.33,
            "healthcare": 0.08,
            "education": 0.06,
            "others": 0.23,
        },
        "major_trading_partners": ["CHN", "CAN", "MEX", "JPN", "DEU"],
        "vulnerable_sectors": ["manufacturing", "agriculture", "automotive"],
    },
    "CN": {  # China - 2024 data
        "trade_dependency": 0.4,
        "import_elasticity": 0.5,
        "cpi_weights": {
            "food": 0.31,
            "transport": 0.13,
            "housing": 0.23,
            "healthcare": 0.09,
            "education": 0.08,
            "others": 0.16,
        },
        "major_trading_partners": ["USA", "JPN", "KOR", "DEU", "AUS"],
        "vulnerable_sectors": ["manufacturing", "textiles", "electronics"],
    },
}


# Sector classification mapping with validated HS codes
SECTOR_MAPPING = {
    "agriculture": ["01", "02", "03", "04", "05"],  # HS codes
    "mining": ["25", "26", "27"],
    "food_processing": ["16", "17", "18", "19", "20", "21", "22", "23", "24"],
    "textiles": [
        "50",
        "51",
        "52",
        "53",
        "54",
        "55",
        "56",
        "57",
        "58",
        "59",
        "60",
        "61",
        "62",
        "63",
    ],
    "chemicals": ["28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38"],
    "plastics": ["39", "40"],
    "wood_paper": ["44", "45", "46", "47", "48", "49"],
    "metals": ["72", "73", "74", "75", "76", "78", "79", "80", "81", "82", "83"],
    "machinery": ["84", "85"],
    "electronics": ["85"],
    "automotive": ["87"],
    "optical_instruments": ["90", "91", "92"],
}