segformer-b4-finetuned-UBC-two

This model is a fine-tuned version of tferhan/segformer-b1-finetuned-UBC on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2500
  • Mean Iou: 0.4701
  • Mean Accuracy: 0.7752
  • Overall Accuracy: 0.7757
  • Accuracy Background: nan
  • Accuracy Residential: 0.7621
  • Accuracy Non-residential: 0.7884
  • Iou Background: 0.0
  • Iou Residential: 0.7025
  • Iou Non-residential: 0.7079

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Residential Accuracy Non-residential Iou Background Iou Residential Iou Non-residential
0.6815 1.0 140 0.6220 0.4724 0.8023 0.8038 nan 0.7624 0.8421 0.0 0.6996 0.7176
0.3859 2.0 280 0.3193 0.4353 0.7151 0.7159 nan 0.6956 0.7347 0.0 0.6443 0.6615
0.293 3.0 420 0.2738 0.4382 0.7323 0.7340 nan 0.6863 0.7783 0.0 0.6376 0.6771
0.2697 4.0 560 0.2571 0.4279 0.7076 0.7065 nan 0.7356 0.6796 0.0 0.6563 0.6273
0.2517 5.0 700 0.2489 0.4453 0.7395 0.7413 nan 0.6923 0.7867 0.0 0.6551 0.6808
0.211 6.0 840 0.2387 0.4451 0.7356 0.7351 nan 0.7481 0.7231 0.0 0.6786 0.6566
0.2117 7.0 980 0.2348 0.4531 0.7430 0.7427 nan 0.7498 0.7361 0.0 0.6863 0.6731
0.1924 8.0 1120 0.2348 0.4649 0.7667 0.7678 nan 0.7389 0.7946 0.0 0.6884 0.7062
0.2213 9.0 1260 0.2401 0.4650 0.7665 0.7674 nan 0.7423 0.7906 0.0 0.6938 0.7011
0.2005 10.0 1400 0.2330 0.4534 0.7480 0.7484 nan 0.7377 0.7582 0.0 0.6796 0.6805
0.1723 11.0 1540 0.2453 0.4521 0.7484 0.7506 nan 0.6889 0.8079 0.0 0.6613 0.6951
0.1924 12.0 1680 0.2311 0.4576 0.7550 0.7545 nan 0.7695 0.7405 0.0 0.6963 0.6764
0.1843 13.0 1820 0.2418 0.4690 0.7711 0.7726 nan 0.7307 0.8115 0.0 0.6907 0.7165
0.1839 14.0 1960 0.2344 0.4631 0.7647 0.7658 nan 0.7362 0.7932 0.0 0.6845 0.7046
0.1698 15.0 2100 0.2378 0.4627 0.7604 0.7609 nan 0.7450 0.7758 0.0 0.6876 0.7006
0.1832 16.0 2240 0.2423 0.4594 0.7571 0.7585 nan 0.7182 0.7960 0.0 0.6796 0.6984
0.1501 17.0 2380 0.2432 0.4693 0.7717 0.7730 nan 0.7378 0.8056 0.0 0.6924 0.7156
0.1788 18.0 2520 0.2474 0.4785 0.7877 0.7886 nan 0.7647 0.8108 0.0 0.7134 0.7220
0.1524 19.0 2660 0.2513 0.4715 0.7809 0.7827 nan 0.7330 0.8287 0.0 0.6907 0.7237
0.1669 20.0 2800 0.2421 0.4685 0.7723 0.7726 nan 0.7659 0.7788 0.0 0.7036 0.7020
0.1539 21.0 2940 0.2449 0.4706 0.7736 0.7744 nan 0.7515 0.7956 0.0 0.6975 0.7142
0.1664 22.0 3080 0.2433 0.4685 0.7710 0.7716 nan 0.7549 0.7872 0.0 0.7001 0.7054
0.1717 23.0 3220 0.2463 0.4658 0.7679 0.7683 nan 0.7561 0.7797 0.0 0.6953 0.7020
0.1477 24.0 3360 0.2464 0.4671 0.7710 0.7717 nan 0.7513 0.7906 0.0 0.6960 0.7054
0.1491 25.0 3500 0.2457 0.4663 0.7675 0.7679 nan 0.7567 0.7782 0.0 0.6990 0.6998
0.1601 26.0 3640 0.2452 0.4699 0.7739 0.7746 nan 0.7554 0.7924 0.0 0.7015 0.7082
0.1436 27.0 3780 0.2538 0.4657 0.7683 0.7689 nan 0.7526 0.7841 0.0 0.6953 0.7018
0.1487 28.0 3920 0.2489 0.4668 0.7702 0.7707 nan 0.7567 0.7837 0.0 0.6986 0.7018
0.1514 29.0 4060 0.2456 0.4686 0.7730 0.7735 nan 0.7583 0.7877 0.0 0.6999 0.7060
0.1519 30.0 4200 0.2500 0.4701 0.7752 0.7757 nan 0.7621 0.7884 0.0 0.7025 0.7079

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
2
Safetensors
Model size
64M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for tferhan/segformer-b4-finetuned-UBC-two