metadata
extra_gated_heading: Acknowledge to follow corresponding license to access the repository
extra_gated_button_content: Agree and access repository
extra_gated_fields:
First Name: text
Last Name: text
Country: country
Affiliation: text
license: cc-by-nc-4.0
datasets:
- Salesforce/xlam-function-calling-60k
language:
- en
pipeline_tag: text-generation
tags:
- function-calling
- LLM Agent
- tool-use
- mistral
- pytorch
- TensorBlock
- GGUF
library_name: transformers
base_model: Salesforce/xLAM-7b-r

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
Salesforce/xLAM-7b-r - GGUF
This repo contains GGUF format model files for Salesforce/xLAM-7b-r.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
<s>[INST] {prompt} [/INST]
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
xLAM-7b-r-Q2_K.gguf | Q2_K | 2.532 GB | smallest, significant quality loss - not recommended for most purposes |
xLAM-7b-r-Q3_K_S.gguf | Q3_K_S | 2.947 GB | very small, high quality loss |
xLAM-7b-r-Q3_K_M.gguf | Q3_K_M | 3.277 GB | very small, high quality loss |
xLAM-7b-r-Q3_K_L.gguf | Q3_K_L | 3.560 GB | small, substantial quality loss |
xLAM-7b-r-Q4_0.gguf | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
xLAM-7b-r-Q4_K_S.gguf | Q4_K_S | 3.856 GB | small, greater quality loss |
xLAM-7b-r-Q4_K_M.gguf | Q4_K_M | 4.068 GB | medium, balanced quality - recommended |
xLAM-7b-r-Q5_0.gguf | Q5_0 | 4.654 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
xLAM-7b-r-Q5_K_S.gguf | Q5_K_S | 4.654 GB | large, low quality loss - recommended |
xLAM-7b-r-Q5_K_M.gguf | Q5_K_M | 4.779 GB | large, very low quality loss - recommended |
xLAM-7b-r-Q6_K.gguf | Q6_K | 5.534 GB | very large, extremely low quality loss |
xLAM-7b-r-Q8_0.gguf | Q8_0 | 7.167 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/xLAM-7b-r-GGUF --include "xLAM-7b-r-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/xLAM-7b-r-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'