Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
base_model: TinyLlama/TinyLlama_v1.1
bf16: auto
chat_template: chatml
dataset_prepared_path: null
datasets:
- data_files:
  - e4b62e75bc945988_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e4b62e75bc945988_train_data.json
  type:
    field_input: justification
    field_instruction: claim
    field_output: label
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: tensor24/miner_id_ac6561e1-e8e1-4f65-83fe-02c18241db03
hub_repo: tensor24/miner_id_ac6561e1-e8e1-4f65-83fe-02c18241db03
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/e4b62e75bc945988_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_ac6561e1-e8e1-4f65-83fe-02c18241db03
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 4056
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: prongsie
wandb_mode: online
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

miner_id_ac6561e1-e8e1-4f65-83fe-02c18241db03

This model is a fine-tuned version of TinyLlama/TinyLlama_v1.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 6.2936

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 10

Training results

Training Loss Epoch Step Validation Loss
9.674 0.0026 1 9.7131
10.5741 0.0077 3 9.4764
8.2202 0.0155 6 7.0726
5.4883 0.0232 9 6.2936

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
27
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for tensor24/miner_id_ac6561e1-e8e1-4f65-83fe-02c18241db03

Adapter
(343)
this model