EstBERT128_Rubric / README.md
ksirts's picture
Upload 5 files
c3c1db4
|
raw
history blame
5.27 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - rubric
metrics:
  - accuracy
model-index:
  - name: estbert128_lr5e-5_b16_s3
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: rubric
          type: rubric
          args: rubric
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8329238295555115

estbert128_lr5e-5_b16_s3

This model is a fine-tuned version of tartuNLP/EstBERT on the rubric dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0552
  • Accuracy: 0.8329

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
  • lr_scheduler_type: polynomial
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1147 1.0 179 0.7421 0.7445
0.4323 2.0 358 0.6863 0.7813
0.1442 3.0 537 0.8545 0.7838
0.0496 4.0 716 1.2872 0.7494
0.0276 5.0 895 1.4702 0.7641
0.0202 6.0 1074 1.3764 0.7838
0.0144 7.0 1253 1.5762 0.7887
0.0078 8.0 1432 1.8806 0.7666
0.0177 9.0 1611 1.6159 0.7912
0.0223 10.0 1790 1.5863 0.7936
0.0108 11.0 1969 1.8051 0.7912
0.0201 12.0 2148 1.9344 0.7789
0.0252 13.0 2327 1.7978 0.8084
0.0104 14.0 2506 1.8779 0.7887
0.0138 15.0 2685 1.6456 0.8133
0.0066 16.0 2864 1.9668 0.7912
0.0148 17.0 3043 2.0068 0.7813
0.0128 18.0 3222 2.1539 0.7617
0.0115 19.0 3401 2.2490 0.7838
0.0186 20.0 3580 2.1768 0.7666
0.0051 21.0 3759 1.8859 0.7912
0.001 22.0 3938 2.0132 0.7912
0.0133 23.0 4117 1.8786 0.8084
0.0149 24.0 4296 2.2307 0.7961
0.014 25.0 4475 2.0041 0.8206
0.0132 26.0 4654 1.8872 0.8133
0.0079 27.0 4833 1.9357 0.7961
0.0078 28.0 5012 2.1891 0.7936
0.0126 29.0 5191 2.0207 0.8034
0.0003 30.0 5370 2.1917 0.8010
0.0015 31.0 5549 2.0417 0.8157
0.0056 32.0 5728 2.1172 0.8084
0.0058 33.0 5907 2.1921 0.8206
0.0001 34.0 6086 2.0079 0.8206
0.0031 35.0 6265 2.2447 0.8206
0.0007 36.0 6444 2.1802 0.8084
0.0061 37.0 6623 2.1103 0.8157
0.0 38.0 6802 2.2265 0.8084
0.0035 39.0 6981 2.0549 0.8329
0.0038 40.0 7160 2.1352 0.8182
0.0001 41.0 7339 2.0975 0.8108
0.0 42.0 7518 2.0833 0.8256
0.0 43.0 7697 2.1020 0.8280
0.0 44.0 7876 2.0841 0.8305
0.0 45.0 8055 2.2085 0.8182
0.0 46.0 8234 2.0756 0.8329
0.0 47.0 8413 2.1237 0.8305
0.0 48.0 8592 2.1217 0.8280
0.0052 49.0 8771 2.3567 0.8059
0.0014 50.0 8950 2.1710 0.8206
0.0032 51.0 9129 2.1452 0.8206
0.0 52.0 9308 2.2820 0.8133
0.0001 53.0 9487 2.2279 0.8157
0.0 54.0 9666 2.1841 0.8182
0.0 55.0 9845 2.1208 0.8231
0.0 56.0 10024 2.0967 0.8256
0.0002 57.0 10203 2.1911 0.8231
0.0 58.0 10382 2.2014 0.8231
0.0 59.0 10561 2.2014 0.8182

Framework versions

  • Transformers 4.14.1
  • Pytorch 1.10.1+cu113
  • Datasets 1.16.1
  • Tokenizers 0.10.3