File size: 4,247 Bytes
9ba2e0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
library_name: peft
base_model: oopsung/llama2-7b-koNqa-test-v1
tags:
- axolotl
- generated_from_trainer
datasets:
- 7897b36af6847987_train_data.json
model-index:
- name: test-llama2-7b-koNqa-test-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
adapter: lora
base_model: oopsung/llama2-7b-koNqa-test-v1
bf16: auto
data_collator:
max_length: 8192
padding: true
type: dynamic_padding
dataset_prepared_path: null
datasets:
- data_files:
- 7897b36af6847987_train_data.json
ds_type: json
format: custom
path: 7897b36af6847987_train_data.json
preprocessing:
- shuffle: true
type:
field: null
field_input: null
field_instruction: mood
field_output: lyrics
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: taopanda/test-llama2-7b-koNqa-test-v1
learning_rate: 0.0001980900647573094
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 600
micro_batch_size: 8
model_type: LlamaForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out/taopanda_test-llama2-7b-koNqa-test-v1
resume_from_checkpoint: null
s2_attention: null
save_safetensors: true
save_steps: 0.15
save_total_limit: 1
seed: 26232
special_tokens: null
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda_test-llama2-7b-koNqa-test-v1
wandb_project: subnet56-test
wandb_runid: taopanda_test-llama2-7b-koNqa-test-v1
wandb_watch: null
warmup_ratio: 0.06
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# test-llama2-7b-koNqa-test-v1
This model is a fine-tuned version of [oopsung/llama2-7b-koNqa-test-v1](https://huggingface.co/oopsung/llama2-7b-koNqa-test-v1) on the 7897b36af6847987_train_data.json dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5600
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001980900647573094
- train_batch_size: 8
- eval_batch_size: 8
- seed: 26232
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 12
- training_steps: 205
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.0028 | 0.0098 | 1 | 2.0533 |
| 1.7152 | 0.2543 | 26 | 1.6692 |
| 1.5552 | 0.5086 | 52 | 1.6252 |
| 1.648 | 0.7628 | 78 | 1.6017 |
| 1.5565 | 1.0098 | 104 | 1.5852 |
| 1.5165 | 1.2641 | 130 | 1.5732 |
| 1.5192 | 1.5183 | 156 | 1.5643 |
| 1.5389 | 1.7726 | 182 | 1.5600 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |