See axolotl config
axolotl version: 0.6.0
adapter: lora
base_model: oopsung/llama2-7b-koNqa-test-v1
bf16: auto
data_collator:
max_length: 8192
padding: true
type: dynamic_padding
dataset_prepared_path: null
datasets:
- data_files:
- 7897b36af6847987_train_data.json
ds_type: json
format: custom
path: 7897b36af6847987_train_data.json
preprocessing:
- shuffle: true
type:
field: null
field_input: null
field_instruction: mood
field_output: lyrics
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: taopanda/test-llama2-7b-koNqa-test-v1
learning_rate: 0.0001980900647573094
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 600
micro_batch_size: 8
model_type: LlamaForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out/taopanda_test-llama2-7b-koNqa-test-v1
resume_from_checkpoint: null
s2_attention: null
save_safetensors: true
save_steps: 0.15
save_total_limit: 1
seed: 26232
special_tokens: null
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda_test-llama2-7b-koNqa-test-v1
wandb_project: subnet56-test
wandb_runid: taopanda_test-llama2-7b-koNqa-test-v1
wandb_watch: null
warmup_ratio: 0.06
weight_decay: 0.0
xformers_attention: null
test-llama2-7b-koNqa-test-v1
This model is a fine-tuned version of oopsung/llama2-7b-koNqa-test-v1 on the 7897b36af6847987_train_data.json dataset. It achieves the following results on the evaluation set:
- Loss: 1.5600
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001980900647573094
- train_batch_size: 8
- eval_batch_size: 8
- seed: 26232
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 12
- training_steps: 205
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0028 | 0.0098 | 1 | 2.0533 |
1.7152 | 0.2543 | 26 | 1.6692 |
1.5552 | 0.5086 | 52 | 1.6252 |
1.648 | 0.7628 | 78 | 1.6017 |
1.5565 | 1.0098 | 104 | 1.5852 |
1.5165 | 1.2641 | 130 | 1.5732 |
1.5192 | 1.5183 | 156 | 1.5643 |
1.5389 | 1.7726 | 182 | 1.5600 |
Framework versions
- PEFT 0.14.0
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for taopanda/test-llama2-7b-koNqa-test-v1
Base model
oopsung/llama2-7b-koNqa-test-v1