See axolotl config
axolotl version: 0.5.2
adapter: lora
base_model: NousResearch/Llama-3.2-1B
bf16: auto
datasets:
- data_files:
- 5b5d462a3104f60a_train_data.json
ds_type: json
format: custom
path: 5b5d462a3104f60a_train_data.json
preprocessing:
- shuffle: true
type:
field: null
field_input: text
field_instruction: document_type
field_output: entities
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
device_map: auto
early_stopping_patience: null
eval_max_new_tokens: 32
evals_per_epoch: 8
flash_attention: null
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: taopanda/0c1875b8-6e01-45de-816e-58e722dc0eb1
learning_rate: 0.0005
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
model_type: LlamaForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: ./outputs/lora-out/taopanda_28ee0c8e-531a-42b6-813c-c18fc5b57bf8
pad_to_sequence_len: true
resume_from_checkpoint: null
save_steps: 0.25
save_total_limit: 1
seed: 42
sequence_len: 1024
special_tokens:
pad_token: <|end_of_text|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda_28ee0c8e-531a-42b6-813c-c18fc5b57bf8
wandb_project: subnet56-test
wandb_runid: taopanda_28ee0c8e-531a-42b6-813c-c18fc5b57bf8
wandb_watch: null
warmup_ratio: 0.06
weight_decay: 0.01
xformers_attention: null
0c1875b8-6e01-45de-816e-58e722dc0eb1
This model is a fine-tuned version of NousResearch/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0423
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0533 | 0.0012 | 1 | 1.1479 |
0.0907 | 0.0748 | 63 | 0.0931 |
0.084 | 0.1496 | 126 | 0.0918 |
0.0813 | 0.2243 | 189 | 0.0753 |
0.071 | 0.2991 | 252 | 0.0611 |
0.0479 | 0.3739 | 315 | 0.0536 |
0.0529 | 0.4487 | 378 | 0.0457 |
0.0367 | 0.5234 | 441 | 0.0423 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for taopanda/0c1875b8-6e01-45de-816e-58e722dc0eb1
Base model
NousResearch/Llama-3.2-1B