metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-student_two_classes
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8
swin-tiny-patch4-window7-224-finetuned-student_two_classes
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6649
- Accuracy: 0.8
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3416 | 1.0 | 13 | 0.6767 | 0.81 |
0.2745 | 2.0 | 26 | 0.7166 | 0.81 |
0.2482 | 3.0 | 39 | 0.7644 | 0.83 |
0.2664 | 4.0 | 52 | 0.7142 | 0.81 |
0.2372 | 5.0 | 65 | 0.8010 | 0.85 |
0.2238 | 6.0 | 78 | 0.8655 | 0.86 |
0.1687 | 7.0 | 91 | 0.8156 | 0.83 |
0.209 | 8.0 | 104 | 0.8460 | 0.83 |
0.4251 | 9.0 | 117 | 0.7301 | 0.81 |
0.4392 | 10.0 | 130 | 0.6775 | 0.78 |
0.3285 | 11.0 | 143 | 0.7145 | 0.81 |
0.3178 | 12.0 | 156 | 0.7431 | 0.83 |
0.4715 | 13.0 | 169 | 0.6973 | 0.81 |
0.373 | 14.0 | 182 | 0.6912 | 0.81 |
0.3378 | 15.0 | 195 | 0.7018 | 0.82 |
0.3867 | 16.0 | 208 | 0.6885 | 0.81 |
0.3525 | 17.0 | 221 | 0.6761 | 0.81 |
0.4253 | 18.0 | 234 | 0.6643 | 0.8 |
0.325 | 19.0 | 247 | 0.6643 | 0.8 |
0.372 | 20.0 | 260 | 0.6649 | 0.8 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1