results
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5025
- Accuracy: 0.8652
- F1: 0.9030
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.6475 | 0.2174 | 50 | 0.6013 | 0.6863 | 0.8134 |
| 0.524 | 0.4348 | 100 | 0.5868 | 0.7108 | 0.8239 |
| 0.5462 | 0.6522 | 150 | 0.5164 | 0.7647 | 0.8486 |
| 0.5212 | 0.8696 | 200 | 0.4979 | 0.7868 | 0.8612 |
| 0.3795 | 1.0870 | 250 | 0.4238 | 0.8113 | 0.8675 |
| 0.3491 | 1.3043 | 300 | 0.4333 | 0.8137 | 0.8725 |
| 0.3169 | 1.5217 | 350 | 0.3667 | 0.8284 | 0.8797 |
| 0.2147 | 1.7391 | 400 | 0.3677 | 0.8603 | 0.9036 |
| 0.2552 | 1.9565 | 450 | 0.3500 | 0.8529 | 0.8905 |
| 0.1161 | 2.1739 | 500 | 0.4615 | 0.8652 | 0.9005 |
| 0.1318 | 2.3913 | 550 | 0.5217 | 0.8603 | 0.9039 |
| 0.0617 | 2.6087 | 600 | 0.4821 | 0.8676 | 0.9043 |
| 0.0523 | 2.8261 | 650 | 0.5025 | 0.8652 | 0.9030 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 15
Model tree for susuahi/results
Base model
google-bert/bert-base-uncased