File size: 2,683 Bytes
6dcd428
3a3233d
9dded33
3a3233d
9dded33
 
8357034
0b263b9
 
 
fcda932
0b263b9
f6b3630
 
 
d1117d6
d248fe1
3a3233d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f6805
3a3233d
e2fbb96
3a3233d
 
e2fbb96
3a3233d
 
 
 
 
 
 
c0f6805
3a3233d
 
 
ba7bbbc
 
3a3233d
d9871df
3a3233d
 
 
7ec0e4f
3a3233d
 
 
e2fbb96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
datasets:
- Vezora/Tested-143k-Python-Alpaca
language:
- en
widget:
- example_title: Python!
  text: >-
    <start_of_turn>user based on given instruction create a solution\n\nhere are
    the instruction write me a linkedlist class
    <end_of_turn>\n<start_of_turn>model
inference:
  parameters:
    do_sample: False
pipeline_tag: text2text-generation
---
# Gemma-2B Fine-Tuned Python Model

## Overview
Gemma-2B Fine-Tuned Python Model is a deep learning model based on the Gemma-2B architecture, fine-tuned specifically for Python programming tasks. This model is designed to understand Python code and assist developers by providing suggestions, completing code snippets, or offering corrections to improve code quality and efficiency.

## Model Details
- **Model Name**: Gemma-2B Fine-Tuned Python Model
- **Model Type**: Deep Learning Model
- **Base Model**: Gemma-2B
- **Language**: Python
- **Task**: Python Code Understanding and Assistance

## Example Use Cases
- Code completion: Automatically completing code snippets based on partial inputs.
- Syntax correction: Identifying and suggesting corrections for syntax errors in Python code.
- Code quality improvement: Providing suggestions to enhance code readability, efficiency, and maintainability.
- Debugging assistance: Offering insights and suggestions to debug Python code by identifying potential errors or inefficiencies.

## How to Use
1. **Install Gemma Python Package**:
   ```bash
    pip install -q -U transformers==4.38.0
    pip install torch
   ```

## Inference
1. **How to use the model in our notebook**:
```python
# Load model directly
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("suriya7/Gemma-2B-Finetuned-Python-Model")
model = AutoModelForCausalLM.from_pretrained("suriya7/Gemma-2B-Finetuned-Python-Model")

query = input('enter a query:')
prompt_template = f"""
<start_of_turn>user based on given instruction create a solution\n\nhere are the instruction {query}
<end_of_turn>\n<start_of_turn>model
"""
prompt = prompt_template
encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True).input_ids

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = encodeds.to(device)


# Increase max_new_tokens if needed
generated_ids = model.generate(inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.eos_token_id)
ans = ''
for i in tokenizer.decode(generated_ids[0], skip_special_tokens=True).split('<end_of_turn>')[:2]:
    ans += i

# Extract only the model's answer
model_answer = ans.split("model")[1].strip()
print(model_answer)
```