File size: 2,683 Bytes
6dcd428 3a3233d 9dded33 3a3233d 9dded33 8357034 0b263b9 fcda932 0b263b9 f6b3630 d1117d6 d248fe1 3a3233d c0f6805 3a3233d e2fbb96 3a3233d e2fbb96 3a3233d c0f6805 3a3233d ba7bbbc 3a3233d d9871df 3a3233d 7ec0e4f 3a3233d e2fbb96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: mit
datasets:
- Vezora/Tested-143k-Python-Alpaca
language:
- en
widget:
- example_title: Python!
text: >-
<start_of_turn>user based on given instruction create a solution\n\nhere are
the instruction write me a linkedlist class
<end_of_turn>\n<start_of_turn>model
inference:
parameters:
do_sample: False
pipeline_tag: text2text-generation
---
# Gemma-2B Fine-Tuned Python Model
## Overview
Gemma-2B Fine-Tuned Python Model is a deep learning model based on the Gemma-2B architecture, fine-tuned specifically for Python programming tasks. This model is designed to understand Python code and assist developers by providing suggestions, completing code snippets, or offering corrections to improve code quality and efficiency.
## Model Details
- **Model Name**: Gemma-2B Fine-Tuned Python Model
- **Model Type**: Deep Learning Model
- **Base Model**: Gemma-2B
- **Language**: Python
- **Task**: Python Code Understanding and Assistance
## Example Use Cases
- Code completion: Automatically completing code snippets based on partial inputs.
- Syntax correction: Identifying and suggesting corrections for syntax errors in Python code.
- Code quality improvement: Providing suggestions to enhance code readability, efficiency, and maintainability.
- Debugging assistance: Offering insights and suggestions to debug Python code by identifying potential errors or inefficiencies.
## How to Use
1. **Install Gemma Python Package**:
```bash
pip install -q -U transformers==4.38.0
pip install torch
```
## Inference
1. **How to use the model in our notebook**:
```python
# Load model directly
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("suriya7/Gemma-2B-Finetuned-Python-Model")
model = AutoModelForCausalLM.from_pretrained("suriya7/Gemma-2B-Finetuned-Python-Model")
query = input('enter a query:')
prompt_template = f"""
<start_of_turn>user based on given instruction create a solution\n\nhere are the instruction {query}
<end_of_turn>\n<start_of_turn>model
"""
prompt = prompt_template
encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True).input_ids
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = encodeds.to(device)
# Increase max_new_tokens if needed
generated_ids = model.generate(inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.eos_token_id)
ans = ''
for i in tokenizer.decode(generated_ids[0], skip_special_tokens=True).split('<end_of_turn>')[:2]:
ans += i
# Extract only the model's answer
model_answer = ans.split("model")[1].strip()
print(model_answer)
``` |