suriya7 commited on
Commit
c0f6805
·
verified ·
1 Parent(s): 9ee9713

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -3
README.md CHANGED
@@ -34,12 +34,17 @@ Gemma-2B Fine-Tuned Python Model is a deep learning model based on the Gemma-2B
34
  1. **Install Gemma Python Package**:
35
  ```bash
36
  pip install -q -U transformers==4.38.0
 
37
  ```
38
 
39
  ## Inference
 
40
  1. **How to use the model in our notebook**:
41
  ```python
 
 
42
  # Load model directly
 
43
  from transformers import AutoTokenizer, AutoModelForCausalLM
44
 
45
  tokenizer = AutoTokenizer.from_pretrained("suriya7/Gemma-2B-Finetuned-Python-Model")
@@ -51,12 +56,15 @@ prompt_template = f"""
51
  <end_of_turn>\n<start_of_turn>model
52
  """
53
  prompt = prompt_template
54
- encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
 
 
 
 
55
 
56
- model_inputs = encodeds.to('cuda')
57
 
58
  # Increase max_new_tokens if needed
59
- generated_ids = model.generate(**model_inputs, max_new_tokens=1000, do_sample=False, pad_token_id=tokenizer.eos_token_id)
60
  ans = ''
61
  for i in tokenizer.decode(generated_ids[0], skip_special_tokens=True).split('<end_of_turn>')[:2]:
62
  ans += i
 
34
  1. **Install Gemma Python Package**:
35
  ```bash
36
  pip install -q -U transformers==4.38.0
37
+ pip install torch
38
  ```
39
 
40
  ## Inference
41
+
42
  1. **How to use the model in our notebook**:
43
  ```python
44
+
45
+
46
  # Load model directly
47
+ import torch
48
  from transformers import AutoTokenizer, AutoModelForCausalLM
49
 
50
  tokenizer = AutoTokenizer.from_pretrained("suriya7/Gemma-2B-Finetuned-Python-Model")
 
56
  <end_of_turn>\n<start_of_turn>model
57
  """
58
  prompt = prompt_template
59
+ encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True).input_ids
60
+
61
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
62
+ model.to(device)
63
+ inputs = encodeds.to(device)
64
 
 
65
 
66
  # Increase max_new_tokens if needed
67
+ generated_ids = model.generate(inputs, max_new_tokens=1000, do_sample=False, pad_token_id=tokenizer.eos_token_id)
68
  ans = ''
69
  for i in tokenizer.decode(generated_ids[0], skip_special_tokens=True).split('<end_of_turn>')[:2]:
70
  ans += i