File size: 2,511 Bytes
6dcd428 9dded33 d248fe1 9dded33 a8dd195 d248fe1 ba7bbbc d248fe1 ba7bbbc 7ec0e4f d248fe1 ba7bbbc 7ec0e4f ba7bbbc 7ec0e4f c0f6805 ba7bbbc c0f6805 7ec0e4f ba7bbbc c0f6805 e2fbb96 c0f6805 e2fbb96 ba7bbbc e2fbb96 ba7bbbc c0f6805 ba7bbbc c0f6805 7ec0e4f cdde43e e2fbb96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: mit
datasets:
- Vezora/Tested-143k-Python-Alpaca
language:
- en
pipeline_tag: text2text-generation
tags:
- code
inference:
parameters:
max_new_tokens: 100
do_sample: false
---
# Gemma-2B Fine-Tuned Python Model
## Overview
Gemma-2B Fine-Tuned Python Model is a deep learning model based on the Gemma-2B architecture, fine-tuned specifically for Python programming tasks. This model is designed to understand Python code and assist developers by providing suggestions, completing code snippets, or offering corrections to improve code quality and efficiency.
## Model Details
- **Model Name**: Gemma-2B Fine-Tuned Python Model
- **Model Type**: Deep Learning Model
- **Base Model**: Gemma-2B
- **Language**: Python
- **Task**: Python Code Understanding and Assistance
## Example Use Cases
- Code completion: Automatically completing code snippets based on partial inputs.
- Syntax correction: Identifying and suggesting corrections for syntax errors in Python code.
- Code quality improvement: Providing suggestions to enhance code readability, efficiency, and maintainability.
- Debugging assistance: Offering insights and suggestions to debug Python code by identifying potential errors or inefficiencies.
## How to Use
1. **Install Gemma Python Package**:
```bash
pip install -q -U transformers==4.38.0
pip install torch
```
## Inference
1. **How to use the model in our notebook**:
```python
# Load model directly
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("suriya7/Gemma-2B-Finetuned-Python-Model")
model = AutoModelForCausalLM.from_pretrained("suriya7/Gemma-2B-Finetuned-Python-Model")
query = input('enter a query:')
prompt_template = f"""
<start_of_turn>user based on given instruction create a solution\n\nhere are the instruction {query}
<end_of_turn>\n<start_of_turn>model
"""
prompt = prompt_template
encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True).input_ids
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = encodeds.to(device)
# Increase max_new_tokens if needed
generated_ids = model.generate(inputs, max_new_tokens=1000, do_sample=False, pad_token_id=tokenizer.eos_token_id)
ans = ''
for i in tokenizer.decode(generated_ids[0], skip_special_tokens=True).split('<end_of_turn>')[:2]:
ans += i
# Extract only the model's answer
model_answer = ans.split("model")[1].strip()
print(model_answer)
``` |