File size: 2,224 Bytes
22e70bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
license: apache-2.0
base_model: facebook/bart-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-summarizer
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-summarizer

This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1898
- Rouge1: 51.7683
- Rouge2: 36.3956
- Rougel: 45.7626
- Rougelsum: 45.7512
- Bert F1: 89.7697

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Bert F1 |
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.48          | 1.0    | 766  | 2.3197          | 46.084  | 31.1672 | 40.7261 | 40.733    | 88.58   |
| 2.203         | 2.0    | 1532 | 2.2230          | 49.9815 | 34.8577 | 44.2515 | 44.2457   | 89.3509 |
| 2.1447        | 3.0    | 2298 | 2.1980          | 50.7333 | 35.3908 | 44.6146 | 44.6091   | 89.4589 |
| 2.0614        | 4.0    | 3064 | 2.1907          | 51.6468 | 36.4567 | 45.7548 | 45.7343   | 89.7909 |
| 2.0515        | 4.9941 | 3825 | 2.1898          | 51.7683 | 36.3956 | 45.7626 | 45.7512   | 89.7697 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0