bart-summarizer

This model is a fine-tuned version of facebook/bart-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1898
  • Rouge1: 51.7683
  • Rouge2: 36.3956
  • Rougel: 45.7626
  • Rougelsum: 45.7512
  • Bert F1: 89.7697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert F1
2.48 1.0 766 2.3197 46.084 31.1672 40.7261 40.733 88.58
2.203 2.0 1532 2.2230 49.9815 34.8577 44.2515 44.2457 89.3509
2.1447 3.0 2298 2.1980 50.7333 35.3908 44.6146 44.6091 89.4589
2.0614 4.0 3064 2.1907 51.6468 36.4567 45.7548 45.7343 89.7909
2.0515 4.9941 3825 2.1898 51.7683 36.3956 45.7626 45.7512 89.7697

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
406M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for sumit7488/bart-summarizer

Finetuned
(167)
this model