subhampokhrel's picture
End of training
6928e8a verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-ucf101-subset
    results: []

videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1371
  • Accuracy: 0.9857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 12
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 750

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1307 0.0333 25 1.9306 0.4286
1.1542 1.0333 50 1.0325 0.6571
0.8002 2.0333 75 0.8868 0.6857
0.4932 3.0333 100 0.7911 0.6857
0.3413 4.0333 125 0.4311 0.8571
0.111 5.0333 150 0.3425 0.8857
0.1577 6.0333 175 0.2600 0.9286
0.0623 7.0333 200 0.2549 0.9286
0.1271 8.0333 225 0.1371 0.9857
0.0697 9.0333 250 0.1045 0.9857
0.0126 10.0333 275 0.1121 0.9857
0.01 11.0333 300 0.1025 0.9857

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0