File size: 2,878 Bytes
139d41e
f61fbea
 
139d41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddde7ce
139d41e
 
 
 
969470b
139d41e
 
969470b
139d41e
 
969470b
139d41e
 
969470b
139d41e
 
 
 
 
 
 
f61fbea
139d41e
969470b
 
 
 
 
139d41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddde7ce
969470b
 
139d41e
 
 
f61fbea
969470b
 
139d41e
 
 
4eca7d5
 
969470b
 
 
 
 
 
 
 
 
139d41e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC2_0_Supertypes_xlm-roberta-large
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: cnec
      type: cnec
      config: default
      split: test
      args: default
    metrics:
    - name: Precision
      type: precision
      value: 0.7760029717682021
    - name: Recall
      type: recall
      value: 0.8582580115036976
    - name: F1
      type: f1
      value: 0.8150604760046821
    - name: Accuracy
      type: accuracy
      value: 0.9631292359381336
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CNEC2_0_Supertypes_xlm-roberta-large

This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1727
- Precision: 0.7760
- Recall: 0.8583
- F1: 0.8151
- Accuracy: 0.9631

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 500
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.9465        | 0.56  | 500  | 0.2705          | 0.4955    | 0.6754 | 0.5716 | 0.9281   |
| 0.2305        | 1.11  | 1000 | 0.1836          | 0.7054    | 0.8205 | 0.7586 | 0.9539   |
| 0.179         | 1.67  | 1500 | 0.1784          | 0.7485    | 0.8180 | 0.7817 | 0.9576   |
| 0.1484        | 2.22  | 2000 | 0.1835          | 0.7571    | 0.8578 | 0.8043 | 0.9615   |
| 0.1283        | 2.78  | 2500 | 0.1792          | 0.7333    | 0.8135 | 0.7713 | 0.9596   |
| 0.1092        | 3.33  | 3000 | 0.1749          | 0.7707    | 0.8422 | 0.8049 | 0.9619   |
| 0.0963        | 3.89  | 3500 | 0.1706          | 0.7711    | 0.8537 | 0.8103 | 0.9633   |
| 0.0845        | 4.44  | 4000 | 0.1709          | 0.7811    | 0.8517 | 0.8149 | 0.9633   |
| 0.0801        | 5.0   | 4500 | 0.1727          | 0.7760    | 0.8583 | 0.8151 | 0.9631   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0