Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -68,29 +68,28 @@ More information needed
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
-
- train_batch_size:
|
72 |
-
- eval_batch_size:
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
- lr_scheduler_warmup_ratio: 0.1
|
77 |
-
- lr_scheduler_warmup_steps:
|
78 |
-
- num_epochs:
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.0327 | 11.11 | 5000 | 0.2014 | 0.8237 | 0.8751 | 0.8486 | 0.9647 |
|
94 |
|
95 |
|
96 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.7760029717682021
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8582580115036976
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8150604760046821
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9631292359381336
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1727
|
48 |
+
- Precision: 0.7760
|
49 |
+
- Recall: 0.8583
|
50 |
+
- F1: 0.8151
|
51 |
+
- Accuracy: 0.9631
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
- lr_scheduler_warmup_ratio: 0.1
|
77 |
+
- lr_scheduler_warmup_steps: 500
|
78 |
+
- num_epochs: 5
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
+
| 0.9465 | 0.56 | 500 | 0.2705 | 0.4955 | 0.6754 | 0.5716 | 0.9281 |
|
85 |
+
| 0.2305 | 1.11 | 1000 | 0.1836 | 0.7054 | 0.8205 | 0.7586 | 0.9539 |
|
86 |
+
| 0.179 | 1.67 | 1500 | 0.1784 | 0.7485 | 0.8180 | 0.7817 | 0.9576 |
|
87 |
+
| 0.1484 | 2.22 | 2000 | 0.1835 | 0.7571 | 0.8578 | 0.8043 | 0.9615 |
|
88 |
+
| 0.1283 | 2.78 | 2500 | 0.1792 | 0.7333 | 0.8135 | 0.7713 | 0.9596 |
|
89 |
+
| 0.1092 | 3.33 | 3000 | 0.1749 | 0.7707 | 0.8422 | 0.8049 | 0.9619 |
|
90 |
+
| 0.0963 | 3.89 | 3500 | 0.1706 | 0.7711 | 0.8537 | 0.8103 | 0.9633 |
|
91 |
+
| 0.0845 | 4.44 | 4000 | 0.1709 | 0.7811 | 0.8517 | 0.8149 | 0.9633 |
|
92 |
+
| 0.0801 | 5.0 | 4500 | 0.1727 | 0.7760 | 0.8583 | 0.8151 | 0.9631 |
|
|
|
93 |
|
94 |
|
95 |
### Framework versions
|