stulcrad commited on
Commit
969470b
·
verified ·
1 Parent(s): 18f404c

Model save

Browse files
Files changed (1) hide show
  1. README.md +22 -23
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8236658932714617
29
  - name: Recall
30
  type: recall
31
- value: 0.8751027115858668
32
  - name: F1
33
  type: f1
34
- value: 0.848605577689243
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9646932746336094
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.2014
48
- - Precision: 0.8237
49
- - Recall: 0.8751
50
- - F1: 0.8486
51
- - Accuracy: 0.9647
52
 
53
  ## Model description
54
 
@@ -68,29 +68,28 @@ More information needed
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
- - train_batch_size: 16
72
- - eval_batch_size: 16
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
  - lr_scheduler_warmup_ratio: 0.1
77
- - lr_scheduler_warmup_steps: 1000
78
- - num_epochs: 12
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
- | 0.9082 | 1.11 | 500 | 0.2281 | 0.6024 | 0.7539 | 0.6697 | 0.9424 |
85
- | 0.1977 | 2.22 | 1000 | 0.1808 | 0.7211 | 0.8369 | 0.7747 | 0.9544 |
86
- | 0.1477 | 3.33 | 1500 | 0.1674 | 0.7716 | 0.8661 | 0.8161 | 0.9612 |
87
- | 0.1105 | 4.44 | 2000 | 0.1628 | 0.7860 | 0.8780 | 0.8294 | 0.9633 |
88
- | 0.0929 | 5.56 | 2500 | 0.1609 | 0.7982 | 0.8743 | 0.8345 | 0.9629 |
89
- | 0.0735 | 6.67 | 3000 | 0.1740 | 0.7901 | 0.8722 | 0.8291 | 0.9625 |
90
- | 0.0614 | 7.78 | 3500 | 0.1860 | 0.8027 | 0.8710 | 0.8355 | 0.9641 |
91
- | 0.0513 | 8.89 | 4000 | 0.1823 | 0.8038 | 0.8804 | 0.8404 | 0.9633 |
92
- | 0.0399 | 10.0 | 4500 | 0.1866 | 0.8103 | 0.8846 | 0.8458 | 0.9639 |
93
- | 0.0327 | 11.11 | 5000 | 0.2014 | 0.8237 | 0.8751 | 0.8486 | 0.9647 |
94
 
95
 
96
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.7760029717682021
29
  - name: Recall
30
  type: recall
31
+ value: 0.8582580115036976
32
  - name: F1
33
  type: f1
34
+ value: 0.8150604760046821
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9631292359381336
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1727
48
+ - Precision: 0.7760
49
+ - Recall: 0.8583
50
+ - F1: 0.8151
51
+ - Accuracy: 0.9631
52
 
53
  ## Model description
54
 
 
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
  - lr_scheduler_warmup_ratio: 0.1
77
+ - lr_scheduler_warmup_steps: 500
78
+ - num_epochs: 5
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
+ | 0.9465 | 0.56 | 500 | 0.2705 | 0.4955 | 0.6754 | 0.5716 | 0.9281 |
85
+ | 0.2305 | 1.11 | 1000 | 0.1836 | 0.7054 | 0.8205 | 0.7586 | 0.9539 |
86
+ | 0.179 | 1.67 | 1500 | 0.1784 | 0.7485 | 0.8180 | 0.7817 | 0.9576 |
87
+ | 0.1484 | 2.22 | 2000 | 0.1835 | 0.7571 | 0.8578 | 0.8043 | 0.9615 |
88
+ | 0.1283 | 2.78 | 2500 | 0.1792 | 0.7333 | 0.8135 | 0.7713 | 0.9596 |
89
+ | 0.1092 | 3.33 | 3000 | 0.1749 | 0.7707 | 0.8422 | 0.8049 | 0.9619 |
90
+ | 0.0963 | 3.89 | 3500 | 0.1706 | 0.7711 | 0.8537 | 0.8103 | 0.9633 |
91
+ | 0.0845 | 4.44 | 4000 | 0.1709 | 0.7811 | 0.8517 | 0.8149 | 0.9633 |
92
+ | 0.0801 | 5.0 | 4500 | 0.1727 | 0.7760 | 0.8583 | 0.8151 | 0.9631 |
 
93
 
94
 
95
  ### Framework versions