File size: 23,737 Bytes
d000a19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:09,057 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:09,057 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:09,057 Train: 758 sentences
2024-03-26 11:59:09,057 (train_with_dev=False, train_with_test=False)
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:09,057 Training Params:
2024-03-26 11:59:09,057 - learning_rate: "5e-05"
2024-03-26 11:59:09,057 - mini_batch_size: "8"
2024-03-26 11:59:09,057 - max_epochs: "10"
2024-03-26 11:59:09,057 - shuffle: "True"
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:09,057 Plugins:
2024-03-26 11:59:09,057 - TensorboardLogger
2024-03-26 11:59:09,057 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:09,057 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 11:59:09,057 - metric: "('micro avg', 'f1-score')"
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:09,057 Computation:
2024-03-26 11:59:09,057 - compute on device: cuda:0
2024-03-26 11:59:09,057 - embedding storage: none
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:09,057 Model training base path: "flair-co-funer-german_bert_base-bs8-e10-lr5e-05-4"
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:09,058 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 11:59:10,418 epoch 1 - iter 9/95 - loss 3.11551508 - time (sec): 1.36 - samples/sec: 2132.11 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:59:11,850 epoch 1 - iter 18/95 - loss 2.91592715 - time (sec): 2.79 - samples/sec: 1975.14 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:59:13,523 epoch 1 - iter 27/95 - loss 2.63491605 - time (sec): 4.46 - samples/sec: 1920.85 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:59:15,532 epoch 1 - iter 36/95 - loss 2.39303542 - time (sec): 6.47 - samples/sec: 1843.82 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:59:17,444 epoch 1 - iter 45/95 - loss 2.19445986 - time (sec): 8.39 - samples/sec: 1859.55 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:59:19,715 epoch 1 - iter 54/95 - loss 2.01807178 - time (sec): 10.66 - samples/sec: 1796.53 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:59:21,763 epoch 1 - iter 63/95 - loss 1.85928116 - time (sec): 12.71 - samples/sec: 1778.94 - lr: 0.000033 - momentum: 0.000000
2024-03-26 11:59:22,764 epoch 1 - iter 72/95 - loss 1.76634872 - time (sec): 13.71 - samples/sec: 1822.57 - lr: 0.000037 - momentum: 0.000000
2024-03-26 11:59:25,096 epoch 1 - iter 81/95 - loss 1.62019393 - time (sec): 16.04 - samples/sec: 1771.09 - lr: 0.000042 - momentum: 0.000000
2024-03-26 11:59:26,515 epoch 1 - iter 90/95 - loss 1.49289861 - time (sec): 17.46 - samples/sec: 1830.77 - lr: 0.000047 - momentum: 0.000000
2024-03-26 11:59:27,817 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:27,817 EPOCH 1 done: loss 1.4311 - lr: 0.000047
2024-03-26 11:59:28,673 DEV : loss 0.3974745273590088 - f1-score (micro avg) 0.7207
2024-03-26 11:59:28,674 saving best model
2024-03-26 11:59:28,954 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:30,567 epoch 2 - iter 9/95 - loss 0.51132915 - time (sec): 1.61 - samples/sec: 1787.31 - lr: 0.000050 - momentum: 0.000000
2024-03-26 11:59:32,312 epoch 2 - iter 18/95 - loss 0.41287581 - time (sec): 3.36 - samples/sec: 1840.74 - lr: 0.000049 - momentum: 0.000000
2024-03-26 11:59:34,170 epoch 2 - iter 27/95 - loss 0.38177177 - time (sec): 5.22 - samples/sec: 1813.09 - lr: 0.000048 - momentum: 0.000000
2024-03-26 11:59:36,623 epoch 2 - iter 36/95 - loss 0.33454736 - time (sec): 7.67 - samples/sec: 1701.24 - lr: 0.000048 - momentum: 0.000000
2024-03-26 11:59:38,634 epoch 2 - iter 45/95 - loss 0.32462192 - time (sec): 9.68 - samples/sec: 1704.50 - lr: 0.000047 - momentum: 0.000000
2024-03-26 11:59:40,436 epoch 2 - iter 54/95 - loss 0.33859423 - time (sec): 11.48 - samples/sec: 1727.29 - lr: 0.000047 - momentum: 0.000000
2024-03-26 11:59:42,905 epoch 2 - iter 63/95 - loss 0.32027748 - time (sec): 13.95 - samples/sec: 1713.90 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:59:44,796 epoch 2 - iter 72/95 - loss 0.31809533 - time (sec): 15.84 - samples/sec: 1707.05 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:59:47,076 epoch 2 - iter 81/95 - loss 0.30946687 - time (sec): 18.12 - samples/sec: 1688.25 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:59:48,400 epoch 2 - iter 90/95 - loss 0.30584654 - time (sec): 19.45 - samples/sec: 1713.26 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:59:48,844 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:48,845 EPOCH 2 done: loss 0.3017 - lr: 0.000045
2024-03-26 11:59:49,798 DEV : loss 0.24508343636989594 - f1-score (micro avg) 0.8649
2024-03-26 11:59:49,800 saving best model
2024-03-26 11:59:50,246 ----------------------------------------------------------------------------------------------------
2024-03-26 11:59:51,810 epoch 3 - iter 9/95 - loss 0.17662022 - time (sec): 1.56 - samples/sec: 1694.57 - lr: 0.000044 - momentum: 0.000000
2024-03-26 11:59:53,538 epoch 3 - iter 18/95 - loss 0.14946269 - time (sec): 3.29 - samples/sec: 1697.74 - lr: 0.000043 - momentum: 0.000000
2024-03-26 11:59:55,440 epoch 3 - iter 27/95 - loss 0.17150757 - time (sec): 5.19 - samples/sec: 1714.83 - lr: 0.000043 - momentum: 0.000000
2024-03-26 11:59:57,385 epoch 3 - iter 36/95 - loss 0.17605043 - time (sec): 7.14 - samples/sec: 1690.97 - lr: 0.000042 - momentum: 0.000000
2024-03-26 11:59:59,448 epoch 3 - iter 45/95 - loss 0.17196591 - time (sec): 9.20 - samples/sec: 1715.95 - lr: 0.000042 - momentum: 0.000000
2024-03-26 12:00:01,784 epoch 3 - iter 54/95 - loss 0.16879250 - time (sec): 11.54 - samples/sec: 1678.78 - lr: 0.000041 - momentum: 0.000000
2024-03-26 12:00:03,576 epoch 3 - iter 63/95 - loss 0.16109343 - time (sec): 13.33 - samples/sec: 1678.31 - lr: 0.000041 - momentum: 0.000000
2024-03-26 12:00:05,589 epoch 3 - iter 72/95 - loss 0.15752743 - time (sec): 15.34 - samples/sec: 1687.28 - lr: 0.000040 - momentum: 0.000000
2024-03-26 12:00:07,623 epoch 3 - iter 81/95 - loss 0.16724057 - time (sec): 17.38 - samples/sec: 1704.42 - lr: 0.000040 - momentum: 0.000000
2024-03-26 12:00:09,915 epoch 3 - iter 90/95 - loss 0.16469999 - time (sec): 19.67 - samples/sec: 1686.10 - lr: 0.000039 - momentum: 0.000000
2024-03-26 12:00:10,534 ----------------------------------------------------------------------------------------------------
2024-03-26 12:00:10,534 EPOCH 3 done: loss 0.1671 - lr: 0.000039
2024-03-26 12:00:11,475 DEV : loss 0.20654602348804474 - f1-score (micro avg) 0.866
2024-03-26 12:00:11,476 saving best model
2024-03-26 12:00:11,925 ----------------------------------------------------------------------------------------------------
2024-03-26 12:00:14,379 epoch 4 - iter 9/95 - loss 0.06959102 - time (sec): 2.45 - samples/sec: 1612.63 - lr: 0.000039 - momentum: 0.000000
2024-03-26 12:00:15,556 epoch 4 - iter 18/95 - loss 0.07924386 - time (sec): 3.63 - samples/sec: 1763.18 - lr: 0.000038 - momentum: 0.000000
2024-03-26 12:00:17,785 epoch 4 - iter 27/95 - loss 0.09207853 - time (sec): 5.86 - samples/sec: 1774.88 - lr: 0.000037 - momentum: 0.000000
2024-03-26 12:00:19,293 epoch 4 - iter 36/95 - loss 0.09786047 - time (sec): 7.37 - samples/sec: 1810.88 - lr: 0.000037 - momentum: 0.000000
2024-03-26 12:00:20,634 epoch 4 - iter 45/95 - loss 0.09845056 - time (sec): 8.71 - samples/sec: 1842.74 - lr: 0.000036 - momentum: 0.000000
2024-03-26 12:00:22,742 epoch 4 - iter 54/95 - loss 0.09663956 - time (sec): 10.82 - samples/sec: 1789.42 - lr: 0.000036 - momentum: 0.000000
2024-03-26 12:00:25,103 epoch 4 - iter 63/95 - loss 0.10785088 - time (sec): 13.18 - samples/sec: 1757.00 - lr: 0.000035 - momentum: 0.000000
2024-03-26 12:00:26,614 epoch 4 - iter 72/95 - loss 0.10490869 - time (sec): 14.69 - samples/sec: 1789.10 - lr: 0.000035 - momentum: 0.000000
2024-03-26 12:00:28,246 epoch 4 - iter 81/95 - loss 0.10385446 - time (sec): 16.32 - samples/sec: 1819.91 - lr: 0.000034 - momentum: 0.000000
2024-03-26 12:00:29,896 epoch 4 - iter 90/95 - loss 0.10468697 - time (sec): 17.97 - samples/sec: 1847.82 - lr: 0.000034 - momentum: 0.000000
2024-03-26 12:00:30,524 ----------------------------------------------------------------------------------------------------
2024-03-26 12:00:30,524 EPOCH 4 done: loss 0.1058 - lr: 0.000034
2024-03-26 12:00:31,464 DEV : loss 0.20639045536518097 - f1-score (micro avg) 0.9061
2024-03-26 12:00:31,465 saving best model
2024-03-26 12:00:31,899 ----------------------------------------------------------------------------------------------------
2024-03-26 12:00:33,151 epoch 5 - iter 9/95 - loss 0.11849622 - time (sec): 1.25 - samples/sec: 2367.15 - lr: 0.000033 - momentum: 0.000000
2024-03-26 12:00:34,644 epoch 5 - iter 18/95 - loss 0.09990788 - time (sec): 2.74 - samples/sec: 2125.68 - lr: 0.000032 - momentum: 0.000000
2024-03-26 12:00:36,707 epoch 5 - iter 27/95 - loss 0.08403115 - time (sec): 4.80 - samples/sec: 1913.94 - lr: 0.000032 - momentum: 0.000000
2024-03-26 12:00:39,162 epoch 5 - iter 36/95 - loss 0.08445462 - time (sec): 7.26 - samples/sec: 1749.59 - lr: 0.000031 - momentum: 0.000000
2024-03-26 12:00:40,406 epoch 5 - iter 45/95 - loss 0.09122409 - time (sec): 8.50 - samples/sec: 1796.12 - lr: 0.000031 - momentum: 0.000000
2024-03-26 12:00:42,378 epoch 5 - iter 54/95 - loss 0.08649690 - time (sec): 10.48 - samples/sec: 1827.16 - lr: 0.000030 - momentum: 0.000000
2024-03-26 12:00:44,512 epoch 5 - iter 63/95 - loss 0.08178669 - time (sec): 12.61 - samples/sec: 1812.39 - lr: 0.000030 - momentum: 0.000000
2024-03-26 12:00:45,811 epoch 5 - iter 72/95 - loss 0.08147182 - time (sec): 13.91 - samples/sec: 1840.43 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:00:48,448 epoch 5 - iter 81/95 - loss 0.07532693 - time (sec): 16.55 - samples/sec: 1775.15 - lr: 0.000029 - momentum: 0.000000
2024-03-26 12:00:50,528 epoch 5 - iter 90/95 - loss 0.07517831 - time (sec): 18.63 - samples/sec: 1757.85 - lr: 0.000028 - momentum: 0.000000
2024-03-26 12:00:51,418 ----------------------------------------------------------------------------------------------------
2024-03-26 12:00:51,418 EPOCH 5 done: loss 0.0778 - lr: 0.000028
2024-03-26 12:00:52,372 DEV : loss 0.1956116110086441 - f1-score (micro avg) 0.9178
2024-03-26 12:00:52,374 saving best model
2024-03-26 12:00:52,849 ----------------------------------------------------------------------------------------------------
2024-03-26 12:00:54,564 epoch 6 - iter 9/95 - loss 0.09104755 - time (sec): 1.71 - samples/sec: 1934.88 - lr: 0.000027 - momentum: 0.000000
2024-03-26 12:00:56,671 epoch 6 - iter 18/95 - loss 0.06055749 - time (sec): 3.82 - samples/sec: 1773.75 - lr: 0.000027 - momentum: 0.000000
2024-03-26 12:00:58,142 epoch 6 - iter 27/95 - loss 0.06306007 - time (sec): 5.29 - samples/sec: 1805.78 - lr: 0.000026 - momentum: 0.000000
2024-03-26 12:01:00,604 epoch 6 - iter 36/95 - loss 0.05149544 - time (sec): 7.75 - samples/sec: 1656.27 - lr: 0.000026 - momentum: 0.000000
2024-03-26 12:01:02,418 epoch 6 - iter 45/95 - loss 0.04808451 - time (sec): 9.57 - samples/sec: 1681.48 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:01:04,989 epoch 6 - iter 54/95 - loss 0.05677027 - time (sec): 12.14 - samples/sec: 1658.67 - lr: 0.000025 - momentum: 0.000000
2024-03-26 12:01:06,572 epoch 6 - iter 63/95 - loss 0.05658119 - time (sec): 13.72 - samples/sec: 1672.98 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:01:08,132 epoch 6 - iter 72/95 - loss 0.05676127 - time (sec): 15.28 - samples/sec: 1697.53 - lr: 0.000024 - momentum: 0.000000
2024-03-26 12:01:10,274 epoch 6 - iter 81/95 - loss 0.05615297 - time (sec): 17.42 - samples/sec: 1692.00 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:01:11,487 epoch 6 - iter 90/95 - loss 0.05920230 - time (sec): 18.64 - samples/sec: 1735.54 - lr: 0.000023 - momentum: 0.000000
2024-03-26 12:01:12,892 ----------------------------------------------------------------------------------------------------
2024-03-26 12:01:12,892 EPOCH 6 done: loss 0.0576 - lr: 0.000023
2024-03-26 12:01:13,859 DEV : loss 0.19573496282100677 - f1-score (micro avg) 0.9042
2024-03-26 12:01:13,861 ----------------------------------------------------------------------------------------------------
2024-03-26 12:01:15,247 epoch 7 - iter 9/95 - loss 0.03915603 - time (sec): 1.39 - samples/sec: 2290.04 - lr: 0.000022 - momentum: 0.000000
2024-03-26 12:01:17,434 epoch 7 - iter 18/95 - loss 0.03185381 - time (sec): 3.57 - samples/sec: 1887.66 - lr: 0.000021 - momentum: 0.000000
2024-03-26 12:01:19,422 epoch 7 - iter 27/95 - loss 0.03946797 - time (sec): 5.56 - samples/sec: 1757.96 - lr: 0.000021 - momentum: 0.000000
2024-03-26 12:01:20,775 epoch 7 - iter 36/95 - loss 0.03799302 - time (sec): 6.91 - samples/sec: 1809.47 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:01:22,488 epoch 7 - iter 45/95 - loss 0.03831134 - time (sec): 8.63 - samples/sec: 1824.07 - lr: 0.000020 - momentum: 0.000000
2024-03-26 12:01:24,868 epoch 7 - iter 54/95 - loss 0.03448802 - time (sec): 11.01 - samples/sec: 1780.19 - lr: 0.000019 - momentum: 0.000000
2024-03-26 12:01:26,952 epoch 7 - iter 63/95 - loss 0.03711925 - time (sec): 13.09 - samples/sec: 1739.36 - lr: 0.000019 - momentum: 0.000000
2024-03-26 12:01:29,235 epoch 7 - iter 72/95 - loss 0.03678211 - time (sec): 15.37 - samples/sec: 1707.00 - lr: 0.000018 - momentum: 0.000000
2024-03-26 12:01:30,770 epoch 7 - iter 81/95 - loss 0.04143827 - time (sec): 16.91 - samples/sec: 1717.57 - lr: 0.000018 - momentum: 0.000000
2024-03-26 12:01:32,742 epoch 7 - iter 90/95 - loss 0.04455468 - time (sec): 18.88 - samples/sec: 1742.11 - lr: 0.000017 - momentum: 0.000000
2024-03-26 12:01:33,439 ----------------------------------------------------------------------------------------------------
2024-03-26 12:01:33,439 EPOCH 7 done: loss 0.0439 - lr: 0.000017
2024-03-26 12:01:34,398 DEV : loss 0.20444811880588531 - f1-score (micro avg) 0.9106
2024-03-26 12:01:34,400 ----------------------------------------------------------------------------------------------------
2024-03-26 12:01:36,096 epoch 8 - iter 9/95 - loss 0.01074191 - time (sec): 1.70 - samples/sec: 1735.19 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:01:38,281 epoch 8 - iter 18/95 - loss 0.01421139 - time (sec): 3.88 - samples/sec: 1708.18 - lr: 0.000016 - momentum: 0.000000
2024-03-26 12:01:40,155 epoch 8 - iter 27/95 - loss 0.02248889 - time (sec): 5.75 - samples/sec: 1686.55 - lr: 0.000015 - momentum: 0.000000
2024-03-26 12:01:42,191 epoch 8 - iter 36/95 - loss 0.02397763 - time (sec): 7.79 - samples/sec: 1690.53 - lr: 0.000015 - momentum: 0.000000
2024-03-26 12:01:43,228 epoch 8 - iter 45/95 - loss 0.03170376 - time (sec): 8.83 - samples/sec: 1776.94 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:01:45,207 epoch 8 - iter 54/95 - loss 0.03599503 - time (sec): 10.81 - samples/sec: 1767.59 - lr: 0.000014 - momentum: 0.000000
2024-03-26 12:01:47,502 epoch 8 - iter 63/95 - loss 0.03927120 - time (sec): 13.10 - samples/sec: 1749.17 - lr: 0.000013 - momentum: 0.000000
2024-03-26 12:01:49,770 epoch 8 - iter 72/95 - loss 0.03887791 - time (sec): 15.37 - samples/sec: 1739.28 - lr: 0.000013 - momentum: 0.000000
2024-03-26 12:01:51,507 epoch 8 - iter 81/95 - loss 0.03775282 - time (sec): 17.11 - samples/sec: 1744.68 - lr: 0.000012 - momentum: 0.000000
2024-03-26 12:01:53,554 epoch 8 - iter 90/95 - loss 0.03465067 - time (sec): 19.15 - samples/sec: 1733.30 - lr: 0.000012 - momentum: 0.000000
2024-03-26 12:01:54,156 ----------------------------------------------------------------------------------------------------
2024-03-26 12:01:54,156 EPOCH 8 done: loss 0.0348 - lr: 0.000012
2024-03-26 12:01:55,092 DEV : loss 0.22374196350574493 - f1-score (micro avg) 0.9219
2024-03-26 12:01:55,093 saving best model
2024-03-26 12:01:55,540 ----------------------------------------------------------------------------------------------------
2024-03-26 12:01:57,115 epoch 9 - iter 9/95 - loss 0.02255766 - time (sec): 1.57 - samples/sec: 2020.25 - lr: 0.000011 - momentum: 0.000000
2024-03-26 12:01:59,514 epoch 9 - iter 18/95 - loss 0.02441884 - time (sec): 3.97 - samples/sec: 1714.10 - lr: 0.000010 - momentum: 0.000000
2024-03-26 12:02:01,166 epoch 9 - iter 27/95 - loss 0.02100220 - time (sec): 5.62 - samples/sec: 1732.76 - lr: 0.000010 - momentum: 0.000000
2024-03-26 12:02:03,532 epoch 9 - iter 36/95 - loss 0.02224059 - time (sec): 7.99 - samples/sec: 1697.76 - lr: 0.000009 - momentum: 0.000000
2024-03-26 12:02:05,456 epoch 9 - iter 45/95 - loss 0.02327845 - time (sec): 9.91 - samples/sec: 1678.15 - lr: 0.000009 - momentum: 0.000000
2024-03-26 12:02:06,885 epoch 9 - iter 54/95 - loss 0.02693223 - time (sec): 11.34 - samples/sec: 1720.22 - lr: 0.000008 - momentum: 0.000000
2024-03-26 12:02:09,040 epoch 9 - iter 63/95 - loss 0.02451513 - time (sec): 13.50 - samples/sec: 1698.43 - lr: 0.000008 - momentum: 0.000000
2024-03-26 12:02:10,272 epoch 9 - iter 72/95 - loss 0.02812439 - time (sec): 14.73 - samples/sec: 1735.32 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:02:13,095 epoch 9 - iter 81/95 - loss 0.02633959 - time (sec): 17.55 - samples/sec: 1691.71 - lr: 0.000007 - momentum: 0.000000
2024-03-26 12:02:14,755 epoch 9 - iter 90/95 - loss 0.02469000 - time (sec): 19.21 - samples/sec: 1714.60 - lr: 0.000006 - momentum: 0.000000
2024-03-26 12:02:15,429 ----------------------------------------------------------------------------------------------------
2024-03-26 12:02:15,429 EPOCH 9 done: loss 0.0262 - lr: 0.000006
2024-03-26 12:02:16,387 DEV : loss 0.22455130517482758 - f1-score (micro avg) 0.9291
2024-03-26 12:02:16,388 saving best model
2024-03-26 12:02:16,842 ----------------------------------------------------------------------------------------------------
2024-03-26 12:02:18,756 epoch 10 - iter 9/95 - loss 0.02413491 - time (sec): 1.91 - samples/sec: 1621.19 - lr: 0.000005 - momentum: 0.000000
2024-03-26 12:02:20,996 epoch 10 - iter 18/95 - loss 0.02195416 - time (sec): 4.15 - samples/sec: 1605.14 - lr: 0.000005 - momentum: 0.000000
2024-03-26 12:02:22,415 epoch 10 - iter 27/95 - loss 0.02161648 - time (sec): 5.57 - samples/sec: 1760.59 - lr: 0.000004 - momentum: 0.000000
2024-03-26 12:02:24,160 epoch 10 - iter 36/95 - loss 0.01921928 - time (sec): 7.32 - samples/sec: 1803.60 - lr: 0.000004 - momentum: 0.000000
2024-03-26 12:02:25,592 epoch 10 - iter 45/95 - loss 0.01857663 - time (sec): 8.75 - samples/sec: 1835.65 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:02:26,637 epoch 10 - iter 54/95 - loss 0.01707115 - time (sec): 9.79 - samples/sec: 1905.49 - lr: 0.000003 - momentum: 0.000000
2024-03-26 12:02:28,484 epoch 10 - iter 63/95 - loss 0.01548965 - time (sec): 11.64 - samples/sec: 1877.87 - lr: 0.000002 - momentum: 0.000000
2024-03-26 12:02:30,794 epoch 10 - iter 72/95 - loss 0.02073655 - time (sec): 13.95 - samples/sec: 1827.57 - lr: 0.000002 - momentum: 0.000000
2024-03-26 12:02:32,482 epoch 10 - iter 81/95 - loss 0.02161353 - time (sec): 15.64 - samples/sec: 1816.89 - lr: 0.000001 - momentum: 0.000000
2024-03-26 12:02:34,943 epoch 10 - iter 90/95 - loss 0.02064998 - time (sec): 18.10 - samples/sec: 1795.54 - lr: 0.000001 - momentum: 0.000000
2024-03-26 12:02:36,200 ----------------------------------------------------------------------------------------------------
2024-03-26 12:02:36,200 EPOCH 10 done: loss 0.0209 - lr: 0.000001
2024-03-26 12:02:37,134 DEV : loss 0.24257376790046692 - f1-score (micro avg) 0.9269
2024-03-26 12:02:37,396 ----------------------------------------------------------------------------------------------------
2024-03-26 12:02:37,397 Loading model from best epoch ...
2024-03-26 12:02:38,241 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 12:02:39,079
Results:
- F-score (micro) 0.9062
- F-score (macro) 0.6887
- Accuracy 0.8319
By class:
precision recall f1-score support
Unternehmen 0.8902 0.8835 0.8868 266
Auslagerung 0.8764 0.9116 0.8937 249
Ort 0.9635 0.9851 0.9742 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8973 0.9153 0.9062 649
macro avg 0.6825 0.6950 0.6887 649
weighted avg 0.9000 0.9153 0.9075 649
2024-03-26 12:02:39,079 ----------------------------------------------------------------------------------------------------
|