Upload ./training.log with huggingface_hub
Browse files- training.log +244 -0
training.log
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
|
2 |
+
2024-03-26 11:59:09,057 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(30001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
|
51 |
+
2024-03-26 11:59:09,057 Corpus: 758 train + 94 dev + 96 test sentences
|
52 |
+
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
|
53 |
+
2024-03-26 11:59:09,057 Train: 758 sentences
|
54 |
+
2024-03-26 11:59:09,057 (train_with_dev=False, train_with_test=False)
|
55 |
+
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
|
56 |
+
2024-03-26 11:59:09,057 Training Params:
|
57 |
+
2024-03-26 11:59:09,057 - learning_rate: "5e-05"
|
58 |
+
2024-03-26 11:59:09,057 - mini_batch_size: "8"
|
59 |
+
2024-03-26 11:59:09,057 - max_epochs: "10"
|
60 |
+
2024-03-26 11:59:09,057 - shuffle: "True"
|
61 |
+
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
|
62 |
+
2024-03-26 11:59:09,057 Plugins:
|
63 |
+
2024-03-26 11:59:09,057 - TensorboardLogger
|
64 |
+
2024-03-26 11:59:09,057 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
|
66 |
+
2024-03-26 11:59:09,057 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2024-03-26 11:59:09,057 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
|
69 |
+
2024-03-26 11:59:09,057 Computation:
|
70 |
+
2024-03-26 11:59:09,057 - compute on device: cuda:0
|
71 |
+
2024-03-26 11:59:09,057 - embedding storage: none
|
72 |
+
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
|
73 |
+
2024-03-26 11:59:09,057 Model training base path: "flair-co-funer-german_bert_base-bs8-e10-lr5e-05-4"
|
74 |
+
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
|
75 |
+
2024-03-26 11:59:09,057 ----------------------------------------------------------------------------------------------------
|
76 |
+
2024-03-26 11:59:09,058 Logging anything other than scalars to TensorBoard is currently not supported.
|
77 |
+
2024-03-26 11:59:10,418 epoch 1 - iter 9/95 - loss 3.11551508 - time (sec): 1.36 - samples/sec: 2132.11 - lr: 0.000004 - momentum: 0.000000
|
78 |
+
2024-03-26 11:59:11,850 epoch 1 - iter 18/95 - loss 2.91592715 - time (sec): 2.79 - samples/sec: 1975.14 - lr: 0.000009 - momentum: 0.000000
|
79 |
+
2024-03-26 11:59:13,523 epoch 1 - iter 27/95 - loss 2.63491605 - time (sec): 4.46 - samples/sec: 1920.85 - lr: 0.000014 - momentum: 0.000000
|
80 |
+
2024-03-26 11:59:15,532 epoch 1 - iter 36/95 - loss 2.39303542 - time (sec): 6.47 - samples/sec: 1843.82 - lr: 0.000018 - momentum: 0.000000
|
81 |
+
2024-03-26 11:59:17,444 epoch 1 - iter 45/95 - loss 2.19445986 - time (sec): 8.39 - samples/sec: 1859.55 - lr: 0.000023 - momentum: 0.000000
|
82 |
+
2024-03-26 11:59:19,715 epoch 1 - iter 54/95 - loss 2.01807178 - time (sec): 10.66 - samples/sec: 1796.53 - lr: 0.000028 - momentum: 0.000000
|
83 |
+
2024-03-26 11:59:21,763 epoch 1 - iter 63/95 - loss 1.85928116 - time (sec): 12.71 - samples/sec: 1778.94 - lr: 0.000033 - momentum: 0.000000
|
84 |
+
2024-03-26 11:59:22,764 epoch 1 - iter 72/95 - loss 1.76634872 - time (sec): 13.71 - samples/sec: 1822.57 - lr: 0.000037 - momentum: 0.000000
|
85 |
+
2024-03-26 11:59:25,096 epoch 1 - iter 81/95 - loss 1.62019393 - time (sec): 16.04 - samples/sec: 1771.09 - lr: 0.000042 - momentum: 0.000000
|
86 |
+
2024-03-26 11:59:26,515 epoch 1 - iter 90/95 - loss 1.49289861 - time (sec): 17.46 - samples/sec: 1830.77 - lr: 0.000047 - momentum: 0.000000
|
87 |
+
2024-03-26 11:59:27,817 ----------------------------------------------------------------------------------------------------
|
88 |
+
2024-03-26 11:59:27,817 EPOCH 1 done: loss 1.4311 - lr: 0.000047
|
89 |
+
2024-03-26 11:59:28,673 DEV : loss 0.3974745273590088 - f1-score (micro avg) 0.7207
|
90 |
+
2024-03-26 11:59:28,674 saving best model
|
91 |
+
2024-03-26 11:59:28,954 ----------------------------------------------------------------------------------------------------
|
92 |
+
2024-03-26 11:59:30,567 epoch 2 - iter 9/95 - loss 0.51132915 - time (sec): 1.61 - samples/sec: 1787.31 - lr: 0.000050 - momentum: 0.000000
|
93 |
+
2024-03-26 11:59:32,312 epoch 2 - iter 18/95 - loss 0.41287581 - time (sec): 3.36 - samples/sec: 1840.74 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2024-03-26 11:59:34,170 epoch 2 - iter 27/95 - loss 0.38177177 - time (sec): 5.22 - samples/sec: 1813.09 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2024-03-26 11:59:36,623 epoch 2 - iter 36/95 - loss 0.33454736 - time (sec): 7.67 - samples/sec: 1701.24 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2024-03-26 11:59:38,634 epoch 2 - iter 45/95 - loss 0.32462192 - time (sec): 9.68 - samples/sec: 1704.50 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2024-03-26 11:59:40,436 epoch 2 - iter 54/95 - loss 0.33859423 - time (sec): 11.48 - samples/sec: 1727.29 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2024-03-26 11:59:42,905 epoch 2 - iter 63/95 - loss 0.32027748 - time (sec): 13.95 - samples/sec: 1713.90 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2024-03-26 11:59:44,796 epoch 2 - iter 72/95 - loss 0.31809533 - time (sec): 15.84 - samples/sec: 1707.05 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2024-03-26 11:59:47,076 epoch 2 - iter 81/95 - loss 0.30946687 - time (sec): 18.12 - samples/sec: 1688.25 - lr: 0.000045 - momentum: 0.000000
|
101 |
+
2024-03-26 11:59:48,400 epoch 2 - iter 90/95 - loss 0.30584654 - time (sec): 19.45 - samples/sec: 1713.26 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2024-03-26 11:59:48,844 ----------------------------------------------------------------------------------------------------
|
103 |
+
2024-03-26 11:59:48,845 EPOCH 2 done: loss 0.3017 - lr: 0.000045
|
104 |
+
2024-03-26 11:59:49,798 DEV : loss 0.24508343636989594 - f1-score (micro avg) 0.8649
|
105 |
+
2024-03-26 11:59:49,800 saving best model
|
106 |
+
2024-03-26 11:59:50,246 ----------------------------------------------------------------------------------------------------
|
107 |
+
2024-03-26 11:59:51,810 epoch 3 - iter 9/95 - loss 0.17662022 - time (sec): 1.56 - samples/sec: 1694.57 - lr: 0.000044 - momentum: 0.000000
|
108 |
+
2024-03-26 11:59:53,538 epoch 3 - iter 18/95 - loss 0.14946269 - time (sec): 3.29 - samples/sec: 1697.74 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2024-03-26 11:59:55,440 epoch 3 - iter 27/95 - loss 0.17150757 - time (sec): 5.19 - samples/sec: 1714.83 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2024-03-26 11:59:57,385 epoch 3 - iter 36/95 - loss 0.17605043 - time (sec): 7.14 - samples/sec: 1690.97 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2024-03-26 11:59:59,448 epoch 3 - iter 45/95 - loss 0.17196591 - time (sec): 9.20 - samples/sec: 1715.95 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2024-03-26 12:00:01,784 epoch 3 - iter 54/95 - loss 0.16879250 - time (sec): 11.54 - samples/sec: 1678.78 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2024-03-26 12:00:03,576 epoch 3 - iter 63/95 - loss 0.16109343 - time (sec): 13.33 - samples/sec: 1678.31 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2024-03-26 12:00:05,589 epoch 3 - iter 72/95 - loss 0.15752743 - time (sec): 15.34 - samples/sec: 1687.28 - lr: 0.000040 - momentum: 0.000000
|
115 |
+
2024-03-26 12:00:07,623 epoch 3 - iter 81/95 - loss 0.16724057 - time (sec): 17.38 - samples/sec: 1704.42 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2024-03-26 12:00:09,915 epoch 3 - iter 90/95 - loss 0.16469999 - time (sec): 19.67 - samples/sec: 1686.10 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2024-03-26 12:00:10,534 ----------------------------------------------------------------------------------------------------
|
118 |
+
2024-03-26 12:00:10,534 EPOCH 3 done: loss 0.1671 - lr: 0.000039
|
119 |
+
2024-03-26 12:00:11,475 DEV : loss 0.20654602348804474 - f1-score (micro avg) 0.866
|
120 |
+
2024-03-26 12:00:11,476 saving best model
|
121 |
+
2024-03-26 12:00:11,925 ----------------------------------------------------------------------------------------------------
|
122 |
+
2024-03-26 12:00:14,379 epoch 4 - iter 9/95 - loss 0.06959102 - time (sec): 2.45 - samples/sec: 1612.63 - lr: 0.000039 - momentum: 0.000000
|
123 |
+
2024-03-26 12:00:15,556 epoch 4 - iter 18/95 - loss 0.07924386 - time (sec): 3.63 - samples/sec: 1763.18 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2024-03-26 12:00:17,785 epoch 4 - iter 27/95 - loss 0.09207853 - time (sec): 5.86 - samples/sec: 1774.88 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2024-03-26 12:00:19,293 epoch 4 - iter 36/95 - loss 0.09786047 - time (sec): 7.37 - samples/sec: 1810.88 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2024-03-26 12:00:20,634 epoch 4 - iter 45/95 - loss 0.09845056 - time (sec): 8.71 - samples/sec: 1842.74 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2024-03-26 12:00:22,742 epoch 4 - iter 54/95 - loss 0.09663956 - time (sec): 10.82 - samples/sec: 1789.42 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2024-03-26 12:00:25,103 epoch 4 - iter 63/95 - loss 0.10785088 - time (sec): 13.18 - samples/sec: 1757.00 - lr: 0.000035 - momentum: 0.000000
|
129 |
+
2024-03-26 12:00:26,614 epoch 4 - iter 72/95 - loss 0.10490869 - time (sec): 14.69 - samples/sec: 1789.10 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2024-03-26 12:00:28,246 epoch 4 - iter 81/95 - loss 0.10385446 - time (sec): 16.32 - samples/sec: 1819.91 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2024-03-26 12:00:29,896 epoch 4 - iter 90/95 - loss 0.10468697 - time (sec): 17.97 - samples/sec: 1847.82 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2024-03-26 12:00:30,524 ----------------------------------------------------------------------------------------------------
|
133 |
+
2024-03-26 12:00:30,524 EPOCH 4 done: loss 0.1058 - lr: 0.000034
|
134 |
+
2024-03-26 12:00:31,464 DEV : loss 0.20639045536518097 - f1-score (micro avg) 0.9061
|
135 |
+
2024-03-26 12:00:31,465 saving best model
|
136 |
+
2024-03-26 12:00:31,899 ----------------------------------------------------------------------------------------------------
|
137 |
+
2024-03-26 12:00:33,151 epoch 5 - iter 9/95 - loss 0.11849622 - time (sec): 1.25 - samples/sec: 2367.15 - lr: 0.000033 - momentum: 0.000000
|
138 |
+
2024-03-26 12:00:34,644 epoch 5 - iter 18/95 - loss 0.09990788 - time (sec): 2.74 - samples/sec: 2125.68 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2024-03-26 12:00:36,707 epoch 5 - iter 27/95 - loss 0.08403115 - time (sec): 4.80 - samples/sec: 1913.94 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2024-03-26 12:00:39,162 epoch 5 - iter 36/95 - loss 0.08445462 - time (sec): 7.26 - samples/sec: 1749.59 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2024-03-26 12:00:40,406 epoch 5 - iter 45/95 - loss 0.09122409 - time (sec): 8.50 - samples/sec: 1796.12 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2024-03-26 12:00:42,378 epoch 5 - iter 54/95 - loss 0.08649690 - time (sec): 10.48 - samples/sec: 1827.16 - lr: 0.000030 - momentum: 0.000000
|
143 |
+
2024-03-26 12:00:44,512 epoch 5 - iter 63/95 - loss 0.08178669 - time (sec): 12.61 - samples/sec: 1812.39 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2024-03-26 12:00:45,811 epoch 5 - iter 72/95 - loss 0.08147182 - time (sec): 13.91 - samples/sec: 1840.43 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2024-03-26 12:00:48,448 epoch 5 - iter 81/95 - loss 0.07532693 - time (sec): 16.55 - samples/sec: 1775.15 - lr: 0.000029 - momentum: 0.000000
|
146 |
+
2024-03-26 12:00:50,528 epoch 5 - iter 90/95 - loss 0.07517831 - time (sec): 18.63 - samples/sec: 1757.85 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2024-03-26 12:00:51,418 ----------------------------------------------------------------------------------------------------
|
148 |
+
2024-03-26 12:00:51,418 EPOCH 5 done: loss 0.0778 - lr: 0.000028
|
149 |
+
2024-03-26 12:00:52,372 DEV : loss 0.1956116110086441 - f1-score (micro avg) 0.9178
|
150 |
+
2024-03-26 12:00:52,374 saving best model
|
151 |
+
2024-03-26 12:00:52,849 ----------------------------------------------------------------------------------------------------
|
152 |
+
2024-03-26 12:00:54,564 epoch 6 - iter 9/95 - loss 0.09104755 - time (sec): 1.71 - samples/sec: 1934.88 - lr: 0.000027 - momentum: 0.000000
|
153 |
+
2024-03-26 12:00:56,671 epoch 6 - iter 18/95 - loss 0.06055749 - time (sec): 3.82 - samples/sec: 1773.75 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2024-03-26 12:00:58,142 epoch 6 - iter 27/95 - loss 0.06306007 - time (sec): 5.29 - samples/sec: 1805.78 - lr: 0.000026 - momentum: 0.000000
|
155 |
+
2024-03-26 12:01:00,604 epoch 6 - iter 36/95 - loss 0.05149544 - time (sec): 7.75 - samples/sec: 1656.27 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2024-03-26 12:01:02,418 epoch 6 - iter 45/95 - loss 0.04808451 - time (sec): 9.57 - samples/sec: 1681.48 - lr: 0.000025 - momentum: 0.000000
|
157 |
+
2024-03-26 12:01:04,989 epoch 6 - iter 54/95 - loss 0.05677027 - time (sec): 12.14 - samples/sec: 1658.67 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2024-03-26 12:01:06,572 epoch 6 - iter 63/95 - loss 0.05658119 - time (sec): 13.72 - samples/sec: 1672.98 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2024-03-26 12:01:08,132 epoch 6 - iter 72/95 - loss 0.05676127 - time (sec): 15.28 - samples/sec: 1697.53 - lr: 0.000024 - momentum: 0.000000
|
160 |
+
2024-03-26 12:01:10,274 epoch 6 - iter 81/95 - loss 0.05615297 - time (sec): 17.42 - samples/sec: 1692.00 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2024-03-26 12:01:11,487 epoch 6 - iter 90/95 - loss 0.05920230 - time (sec): 18.64 - samples/sec: 1735.54 - lr: 0.000023 - momentum: 0.000000
|
162 |
+
2024-03-26 12:01:12,892 ----------------------------------------------------------------------------------------------------
|
163 |
+
2024-03-26 12:01:12,892 EPOCH 6 done: loss 0.0576 - lr: 0.000023
|
164 |
+
2024-03-26 12:01:13,859 DEV : loss 0.19573496282100677 - f1-score (micro avg) 0.9042
|
165 |
+
2024-03-26 12:01:13,861 ----------------------------------------------------------------------------------------------------
|
166 |
+
2024-03-26 12:01:15,247 epoch 7 - iter 9/95 - loss 0.03915603 - time (sec): 1.39 - samples/sec: 2290.04 - lr: 0.000022 - momentum: 0.000000
|
167 |
+
2024-03-26 12:01:17,434 epoch 7 - iter 18/95 - loss 0.03185381 - time (sec): 3.57 - samples/sec: 1887.66 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2024-03-26 12:01:19,422 epoch 7 - iter 27/95 - loss 0.03946797 - time (sec): 5.56 - samples/sec: 1757.96 - lr: 0.000021 - momentum: 0.000000
|
169 |
+
2024-03-26 12:01:20,775 epoch 7 - iter 36/95 - loss 0.03799302 - time (sec): 6.91 - samples/sec: 1809.47 - lr: 0.000020 - momentum: 0.000000
|
170 |
+
2024-03-26 12:01:22,488 epoch 7 - iter 45/95 - loss 0.03831134 - time (sec): 8.63 - samples/sec: 1824.07 - lr: 0.000020 - momentum: 0.000000
|
171 |
+
2024-03-26 12:01:24,868 epoch 7 - iter 54/95 - loss 0.03448802 - time (sec): 11.01 - samples/sec: 1780.19 - lr: 0.000019 - momentum: 0.000000
|
172 |
+
2024-03-26 12:01:26,952 epoch 7 - iter 63/95 - loss 0.03711925 - time (sec): 13.09 - samples/sec: 1739.36 - lr: 0.000019 - momentum: 0.000000
|
173 |
+
2024-03-26 12:01:29,235 epoch 7 - iter 72/95 - loss 0.03678211 - time (sec): 15.37 - samples/sec: 1707.00 - lr: 0.000018 - momentum: 0.000000
|
174 |
+
2024-03-26 12:01:30,770 epoch 7 - iter 81/95 - loss 0.04143827 - time (sec): 16.91 - samples/sec: 1717.57 - lr: 0.000018 - momentum: 0.000000
|
175 |
+
2024-03-26 12:01:32,742 epoch 7 - iter 90/95 - loss 0.04455468 - time (sec): 18.88 - samples/sec: 1742.11 - lr: 0.000017 - momentum: 0.000000
|
176 |
+
2024-03-26 12:01:33,439 ----------------------------------------------------------------------------------------------------
|
177 |
+
2024-03-26 12:01:33,439 EPOCH 7 done: loss 0.0439 - lr: 0.000017
|
178 |
+
2024-03-26 12:01:34,398 DEV : loss 0.20444811880588531 - f1-score (micro avg) 0.9106
|
179 |
+
2024-03-26 12:01:34,400 ----------------------------------------------------------------------------------------------------
|
180 |
+
2024-03-26 12:01:36,096 epoch 8 - iter 9/95 - loss 0.01074191 - time (sec): 1.70 - samples/sec: 1735.19 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2024-03-26 12:01:38,281 epoch 8 - iter 18/95 - loss 0.01421139 - time (sec): 3.88 - samples/sec: 1708.18 - lr: 0.000016 - momentum: 0.000000
|
182 |
+
2024-03-26 12:01:40,155 epoch 8 - iter 27/95 - loss 0.02248889 - time (sec): 5.75 - samples/sec: 1686.55 - lr: 0.000015 - momentum: 0.000000
|
183 |
+
2024-03-26 12:01:42,191 epoch 8 - iter 36/95 - loss 0.02397763 - time (sec): 7.79 - samples/sec: 1690.53 - lr: 0.000015 - momentum: 0.000000
|
184 |
+
2024-03-26 12:01:43,228 epoch 8 - iter 45/95 - loss 0.03170376 - time (sec): 8.83 - samples/sec: 1776.94 - lr: 0.000014 - momentum: 0.000000
|
185 |
+
2024-03-26 12:01:45,207 epoch 8 - iter 54/95 - loss 0.03599503 - time (sec): 10.81 - samples/sec: 1767.59 - lr: 0.000014 - momentum: 0.000000
|
186 |
+
2024-03-26 12:01:47,502 epoch 8 - iter 63/95 - loss 0.03927120 - time (sec): 13.10 - samples/sec: 1749.17 - lr: 0.000013 - momentum: 0.000000
|
187 |
+
2024-03-26 12:01:49,770 epoch 8 - iter 72/95 - loss 0.03887791 - time (sec): 15.37 - samples/sec: 1739.28 - lr: 0.000013 - momentum: 0.000000
|
188 |
+
2024-03-26 12:01:51,507 epoch 8 - iter 81/95 - loss 0.03775282 - time (sec): 17.11 - samples/sec: 1744.68 - lr: 0.000012 - momentum: 0.000000
|
189 |
+
2024-03-26 12:01:53,554 epoch 8 - iter 90/95 - loss 0.03465067 - time (sec): 19.15 - samples/sec: 1733.30 - lr: 0.000012 - momentum: 0.000000
|
190 |
+
2024-03-26 12:01:54,156 ----------------------------------------------------------------------------------------------------
|
191 |
+
2024-03-26 12:01:54,156 EPOCH 8 done: loss 0.0348 - lr: 0.000012
|
192 |
+
2024-03-26 12:01:55,092 DEV : loss 0.22374196350574493 - f1-score (micro avg) 0.9219
|
193 |
+
2024-03-26 12:01:55,093 saving best model
|
194 |
+
2024-03-26 12:01:55,540 ----------------------------------------------------------------------------------------------------
|
195 |
+
2024-03-26 12:01:57,115 epoch 9 - iter 9/95 - loss 0.02255766 - time (sec): 1.57 - samples/sec: 2020.25 - lr: 0.000011 - momentum: 0.000000
|
196 |
+
2024-03-26 12:01:59,514 epoch 9 - iter 18/95 - loss 0.02441884 - time (sec): 3.97 - samples/sec: 1714.10 - lr: 0.000010 - momentum: 0.000000
|
197 |
+
2024-03-26 12:02:01,166 epoch 9 - iter 27/95 - loss 0.02100220 - time (sec): 5.62 - samples/sec: 1732.76 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2024-03-26 12:02:03,532 epoch 9 - iter 36/95 - loss 0.02224059 - time (sec): 7.99 - samples/sec: 1697.76 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2024-03-26 12:02:05,456 epoch 9 - iter 45/95 - loss 0.02327845 - time (sec): 9.91 - samples/sec: 1678.15 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2024-03-26 12:02:06,885 epoch 9 - iter 54/95 - loss 0.02693223 - time (sec): 11.34 - samples/sec: 1720.22 - lr: 0.000008 - momentum: 0.000000
|
201 |
+
2024-03-26 12:02:09,040 epoch 9 - iter 63/95 - loss 0.02451513 - time (sec): 13.50 - samples/sec: 1698.43 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2024-03-26 12:02:10,272 epoch 9 - iter 72/95 - loss 0.02812439 - time (sec): 14.73 - samples/sec: 1735.32 - lr: 0.000007 - momentum: 0.000000
|
203 |
+
2024-03-26 12:02:13,095 epoch 9 - iter 81/95 - loss 0.02633959 - time (sec): 17.55 - samples/sec: 1691.71 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2024-03-26 12:02:14,755 epoch 9 - iter 90/95 - loss 0.02469000 - time (sec): 19.21 - samples/sec: 1714.60 - lr: 0.000006 - momentum: 0.000000
|
205 |
+
2024-03-26 12:02:15,429 ----------------------------------------------------------------------------------------------------
|
206 |
+
2024-03-26 12:02:15,429 EPOCH 9 done: loss 0.0262 - lr: 0.000006
|
207 |
+
2024-03-26 12:02:16,387 DEV : loss 0.22455130517482758 - f1-score (micro avg) 0.9291
|
208 |
+
2024-03-26 12:02:16,388 saving best model
|
209 |
+
2024-03-26 12:02:16,842 ----------------------------------------------------------------------------------------------------
|
210 |
+
2024-03-26 12:02:18,756 epoch 10 - iter 9/95 - loss 0.02413491 - time (sec): 1.91 - samples/sec: 1621.19 - lr: 0.000005 - momentum: 0.000000
|
211 |
+
2024-03-26 12:02:20,996 epoch 10 - iter 18/95 - loss 0.02195416 - time (sec): 4.15 - samples/sec: 1605.14 - lr: 0.000005 - momentum: 0.000000
|
212 |
+
2024-03-26 12:02:22,415 epoch 10 - iter 27/95 - loss 0.02161648 - time (sec): 5.57 - samples/sec: 1760.59 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2024-03-26 12:02:24,160 epoch 10 - iter 36/95 - loss 0.01921928 - time (sec): 7.32 - samples/sec: 1803.60 - lr: 0.000004 - momentum: 0.000000
|
214 |
+
2024-03-26 12:02:25,592 epoch 10 - iter 45/95 - loss 0.01857663 - time (sec): 8.75 - samples/sec: 1835.65 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2024-03-26 12:02:26,637 epoch 10 - iter 54/95 - loss 0.01707115 - time (sec): 9.79 - samples/sec: 1905.49 - lr: 0.000003 - momentum: 0.000000
|
216 |
+
2024-03-26 12:02:28,484 epoch 10 - iter 63/95 - loss 0.01548965 - time (sec): 11.64 - samples/sec: 1877.87 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2024-03-26 12:02:30,794 epoch 10 - iter 72/95 - loss 0.02073655 - time (sec): 13.95 - samples/sec: 1827.57 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2024-03-26 12:02:32,482 epoch 10 - iter 81/95 - loss 0.02161353 - time (sec): 15.64 - samples/sec: 1816.89 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2024-03-26 12:02:34,943 epoch 10 - iter 90/95 - loss 0.02064998 - time (sec): 18.10 - samples/sec: 1795.54 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2024-03-26 12:02:36,200 ----------------------------------------------------------------------------------------------------
|
221 |
+
2024-03-26 12:02:36,200 EPOCH 10 done: loss 0.0209 - lr: 0.000001
|
222 |
+
2024-03-26 12:02:37,134 DEV : loss 0.24257376790046692 - f1-score (micro avg) 0.9269
|
223 |
+
2024-03-26 12:02:37,396 ----------------------------------------------------------------------------------------------------
|
224 |
+
2024-03-26 12:02:37,397 Loading model from best epoch ...
|
225 |
+
2024-03-26 12:02:38,241 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
|
226 |
+
2024-03-26 12:02:39,079
|
227 |
+
Results:
|
228 |
+
- F-score (micro) 0.9062
|
229 |
+
- F-score (macro) 0.6887
|
230 |
+
- Accuracy 0.8319
|
231 |
+
|
232 |
+
By class:
|
233 |
+
precision recall f1-score support
|
234 |
+
|
235 |
+
Unternehmen 0.8902 0.8835 0.8868 266
|
236 |
+
Auslagerung 0.8764 0.9116 0.8937 249
|
237 |
+
Ort 0.9635 0.9851 0.9742 134
|
238 |
+
Software 0.0000 0.0000 0.0000 0
|
239 |
+
|
240 |
+
micro avg 0.8973 0.9153 0.9062 649
|
241 |
+
macro avg 0.6825 0.6950 0.6887 649
|
242 |
+
weighted avg 0.9000 0.9153 0.9075 649
|
243 |
+
|
244 |
+
2024-03-26 12:02:39,079 ----------------------------------------------------------------------------------------------------
|