DepthMaster / app.py
zysong212's picture
Reinitialize repository without history
904cde3
raw
history blame
8.05 kB
import gradio as gr
import os
import torch
from PIL import Image
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
# UNet2DConditionModel,
)
from transformers import CLIPTextModel, CLIPTokenizer
from depthmaster import DepthMasterPipeline
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel
def load_example(example_image):
# 返回选中的图片
return example_image
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "zysong212/DepthMaster" # Replace to the model you would like to use
# if torch.cuda.is_available():
# torch_dtype = torch.float16
# else:
torch_dtype = torch.float32
# pipe = DepthMasterPipeline.from_pretrained('eval', torch_dtype=torch_dtype)
# unet = UNet2DConditionModel.from_pretrained(os.path.join('eval', f'unet'))
# pipe = DepthMasterPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype)
# pipe.unet = unet
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae", torch_dtype=torch_dtype, allow_pickle=False)
unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype, allow_pickle=False)
text_encoder = CLIPTextModel.from_pretrained(model_repo_id, subfolder="text_encoder", torch_dtype=torch_dtype)
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer", torch_dtype=torch_dtype)
pipe = DepthMasterPipeline(vae=vae, unet=unet, text_encoder=text_encoder, tokenizer=tokenizer)
try:
pipe.enable_xformers_memory_efficient_attention()
except ImportError:
pass # run without xformers
pipe = pipe.to(device)
# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
input_image,
progress=gr.Progress(track_tqdm=True),
):
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# ).images[0]
pipe_out = pipe(
input_image,
processing_res=768,
match_input_res=True,
batch_size=1,
color_map="Spectral",
show_progress_bar=True,
resample_method="bilinear",
)
# depth_pred: np.ndarray = pipe_out.depth_np
depth_colored: Image.Image = pipe_out.depth_colored
return depth_colored
# 默认图像路径
example_images = [
"wild_example/000000000776.jpg",
"wild_example/800x.jpg",
"wild_example/000000055950.jpg",
"wild_example/53441037037_c2cbd91ad2_k.jpg",
"wild_example/53501906161_6109e3da29_b.jpg",
"wild_example/m_1e31af1c.jpg",
"wild_example/sg-11134201-7rd5x-lvlh48byidbqca.jpg"
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
#example-gallery {
height: 80px; /* 设置缩略图高度 */
width: auto; /* 保持宽高比 */
margin: 0 auto; /* 图片间距 */
cursor: pointer; /* 鼠标指针变为手型 */
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# DepthMaster")
gr.Markdown("Official demo for DepthMaster. Please refer to our [paper](https://arxiv.org/abs/2501.02576), [project page](https://indu1ge.github.io/DepthMaster_page/), and [github](https://github.com/indu1ge/DepthMaster) for more details.")
gr.Markdown(" ### Depth Estimation with DepthMaster.")
# with gr.Column(elem_id="col-container"):
# gr.Markdown(" # Depth Estimation")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil", elem_id="input-image", interactive=True)
with gr.Column():
depth_map = gr.Image(label="Depth Map with Slider View", type="pil", interactive=False, elem_id="depth-map")
# 计算按钮
compute_button = gr.Button("Compute Depth")
# # 添加示例图片选择器
# with gr.Row():
# gr.Markdown("### example images")
# with gr.Row(elem_id="example-gallery"):
# example_gallery = gr.Gallery(
# label="",
# value=example_images,
# elem_id="example-gallery",
# show_label=False,
# interactive=True,
# columns=10
# )
# 设置默认图片点击后的操作
# example_gallery.select(
# fn=lambda img_path: img_path, # 回调函数:返回选择的路径
# inputs=[],
# outputs=input_image # 输出设置为 Input Image
# )
# example_gallery.click(
# fn=load_example, # 选择图片的回调
# inputs=[example_gallery], # 输入:用户点击的图片
# outputs=[input_image] # 输出:更新 Input Image
# )
# 设置计算按钮的回调
compute_button.click(
fn=infer, # 回调函数
inputs=input_image, # 输入
outputs=depth_map # 输出
)
# 启动 Gradio 应用
demo.launch()
# with gr.Column(scale=45):
# img_in = gr.Image(type="pil")
# with gr.Column(scale=45):
# img_out =
# with gr.Row():
# prompt = gr.Text(
# label="Prompt",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt",
# container=False,
# )
# run_button = gr.Button("Run", scale=0, variant="primary")
# result = gr.Image(label="Result", show_label=False)
# with gr.Accordion("Advanced Settings", open=False):
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a negative prompt",
# visible=False,
# )
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
# )
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
# )
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=0.0, # Replace with defaults that work for your model
# )
# num_inference_steps = gr.Slider(
# label="Number of inference steps",
# minimum=1,
# maximum=50,
# step=1,
# value=2, # Replace with defaults that work for your model
# )
# gr.Examples(examples=examples, inputs=[prompt])
# gr.on(
# triggers=[run_button.click, prompt.submit],
# fn=infer,
# inputs=[
# prompt,
# negative_prompt,
# seed,
# randomize_seed,
# # width,
# # height,
# # guidance_scale,
# # num_inference_steps,
# ],
# outputs=[result, seed],
# )
# if __name__ == "__main__":
# demo.launch()