Spaces:
Running
Running
import gradio as gr | |
import os | |
import torch | |
from PIL import Image | |
from diffusers import ( | |
AutoencoderKL, | |
DiffusionPipeline, | |
# UNet2DConditionModel, | |
) | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from depthmaster import DepthMasterPipeline | |
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel | |
def load_example(example_image): | |
# 返回选中的图片 | |
return example_image | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "zysong212/DepthMaster" # Replace to the model you would like to use | |
# if torch.cuda.is_available(): | |
# torch_dtype = torch.float16 | |
# else: | |
torch_dtype = torch.float32 | |
# pipe = DepthMasterPipeline.from_pretrained('eval', torch_dtype=torch_dtype) | |
# unet = UNet2DConditionModel.from_pretrained(os.path.join('eval', f'unet')) | |
# pipe = DepthMasterPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
# unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype) | |
# pipe.unet = unet | |
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae", torch_dtype=torch_dtype, allow_pickle=False) | |
unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype, allow_pickle=False) | |
text_encoder = CLIPTextModel.from_pretrained(model_repo_id, subfolder="text_encoder", torch_dtype=torch_dtype) | |
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer", torch_dtype=torch_dtype) | |
pipe = DepthMasterPipeline(vae=vae, unet=unet, text_encoder=text_encoder, tokenizer=tokenizer) | |
try: | |
pipe.enable_xformers_memory_efficient_attention() | |
except ImportError: | |
pass # run without xformers | |
pipe = pipe.to(device) | |
# MAX_SEED = np.iinfo(np.int32).max | |
# MAX_IMAGE_SIZE = 1024 | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
def infer( | |
input_image, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
# if randomize_seed: | |
# seed = random.randint(0, MAX_SEED) | |
# generator = torch.Generator().manual_seed(seed) | |
# image = pipe( | |
# prompt=prompt, | |
# negative_prompt=negative_prompt, | |
# guidance_scale=guidance_scale, | |
# num_inference_steps=num_inference_steps, | |
# width=width, | |
# height=height, | |
# generator=generator, | |
# ).images[0] | |
pipe_out = pipe( | |
input_image, | |
processing_res=768, | |
match_input_res=True, | |
batch_size=1, | |
color_map="Spectral", | |
show_progress_bar=True, | |
resample_method="bilinear", | |
) | |
# depth_pred: np.ndarray = pipe_out.depth_np | |
depth_colored: Image.Image = pipe_out.depth_colored | |
return depth_colored | |
# 默认图像路径 | |
example_images = [ | |
"wild_example/000000000776.jpg", | |
"wild_example/800x.jpg", | |
"wild_example/000000055950.jpg", | |
"wild_example/53441037037_c2cbd91ad2_k.jpg", | |
"wild_example/53501906161_6109e3da29_b.jpg", | |
"wild_example/m_1e31af1c.jpg", | |
"wild_example/sg-11134201-7rd5x-lvlh48byidbqca.jpg" | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
#example-gallery { | |
height: 80px; /* 设置缩略图高度 */ | |
width: auto; /* 保持宽高比 */ | |
margin: 0 auto; /* 图片间距 */ | |
cursor: pointer; /* 鼠标指针变为手型 */ | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# DepthMaster") | |
gr.Markdown("Official demo for DepthMaster. Please refer to our [paper](https://arxiv.org/abs/2501.02576), [project page](https://indu1ge.github.io/DepthMaster_page/), and [github](https://github.com/indu1ge/DepthMaster) for more details.") | |
gr.Markdown(" ### Depth Estimation with DepthMaster.") | |
# with gr.Column(elem_id="col-container"): | |
# gr.Markdown(" # Depth Estimation") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image", type="pil", elem_id="input-image", interactive=True) | |
with gr.Column(): | |
depth_map = gr.Image(label="Depth Map with Slider View", type="pil", interactive=False, elem_id="depth-map") | |
# 计算按钮 | |
compute_button = gr.Button("Compute Depth") | |
# # 添加示例图片选择器 | |
# with gr.Row(): | |
# gr.Markdown("### example images") | |
# with gr.Row(elem_id="example-gallery"): | |
# example_gallery = gr.Gallery( | |
# label="", | |
# value=example_images, | |
# elem_id="example-gallery", | |
# show_label=False, | |
# interactive=True, | |
# columns=10 | |
# ) | |
# 设置默认图片点击后的操作 | |
# example_gallery.select( | |
# fn=lambda img_path: img_path, # 回调函数:返回选择的路径 | |
# inputs=[], | |
# outputs=input_image # 输出设置为 Input Image | |
# ) | |
# example_gallery.click( | |
# fn=load_example, # 选择图片的回调 | |
# inputs=[example_gallery], # 输入:用户点击的图片 | |
# outputs=[input_image] # 输出:更新 Input Image | |
# ) | |
# 设置计算按钮的回调 | |
compute_button.click( | |
fn=infer, # 回调函数 | |
inputs=input_image, # 输入 | |
outputs=depth_map # 输出 | |
) | |
# 启动 Gradio 应用 | |
demo.launch() | |
# with gr.Column(scale=45): | |
# img_in = gr.Image(type="pil") | |
# with gr.Column(scale=45): | |
# img_out = | |
# with gr.Row(): | |
# prompt = gr.Text( | |
# label="Prompt", | |
# show_label=False, | |
# max_lines=1, | |
# placeholder="Enter your prompt", | |
# container=False, | |
# ) | |
# run_button = gr.Button("Run", scale=0, variant="primary") | |
# result = gr.Image(label="Result", show_label=False) | |
# with gr.Accordion("Advanced Settings", open=False): | |
# negative_prompt = gr.Text( | |
# label="Negative prompt", | |
# max_lines=1, | |
# placeholder="Enter a negative prompt", | |
# visible=False, | |
# ) | |
# seed = gr.Slider( | |
# label="Seed", | |
# minimum=0, | |
# maximum=MAX_SEED, | |
# step=1, | |
# value=0, | |
# ) | |
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
# with gr.Row(): | |
# width = gr.Slider( | |
# label="Width", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, # Replace with defaults that work for your model | |
# ) | |
# height = gr.Slider( | |
# label="Height", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, # Replace with defaults that work for your model | |
# ) | |
# with gr.Row(): | |
# guidance_scale = gr.Slider( | |
# label="Guidance scale", | |
# minimum=0.0, | |
# maximum=10.0, | |
# step=0.1, | |
# value=0.0, # Replace with defaults that work for your model | |
# ) | |
# num_inference_steps = gr.Slider( | |
# label="Number of inference steps", | |
# minimum=1, | |
# maximum=50, | |
# step=1, | |
# value=2, # Replace with defaults that work for your model | |
# ) | |
# gr.Examples(examples=examples, inputs=[prompt]) | |
# gr.on( | |
# triggers=[run_button.click, prompt.submit], | |
# fn=infer, | |
# inputs=[ | |
# prompt, | |
# negative_prompt, | |
# seed, | |
# randomize_seed, | |
# # width, | |
# # height, | |
# # guidance_scale, | |
# # num_inference_steps, | |
# ], | |
# outputs=[result, seed], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |