File size: 8,046 Bytes
ee133a5
904cde3
ee133a5
 
5a3d50d
904cde3
 
 
 
 
5a3d50d
904cde3
5a3d50d
 
 
 
 
 
 
ee133a5
 
5a3d50d
 
 
 
 
 
 
 
 
904cde3
 
 
 
 
 
 
 
 
ee133a5
5a3d50d
 
 
 
ee133a5
 
 
5a3d50d
 
ee133a5
 
 
 
5a3d50d
ee133a5
 
5a3d50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee133a5
 
 
 
 
 
 
5a3d50d
 
 
 
 
 
ee133a5
 
 
5a3d50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee133a5
 
5a3d50d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
import os

import torch
from PIL import Image
from diffusers import (
    AutoencoderKL,
    DiffusionPipeline,
    # UNet2DConditionModel,
)

from transformers import CLIPTextModel, CLIPTokenizer
from depthmaster import DepthMasterPipeline
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel

def load_example(example_image):
    # 返回选中的图片
    return example_image


device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "zysong212/DepthMaster"  # Replace to the model you would like to use

# if torch.cuda.is_available():
#     torch_dtype = torch.float16
# else:
torch_dtype = torch.float32

# pipe = DepthMasterPipeline.from_pretrained('eval', torch_dtype=torch_dtype)
# unet = UNet2DConditionModel.from_pretrained(os.path.join('eval', f'unet'))
# pipe = DepthMasterPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype)
# pipe.unet = unet
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae", torch_dtype=torch_dtype, allow_pickle=False)
unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype, allow_pickle=False)
text_encoder = CLIPTextModel.from_pretrained(model_repo_id, subfolder="text_encoder", torch_dtype=torch_dtype)
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer", torch_dtype=torch_dtype)
pipe = DepthMasterPipeline(vae=vae, unet=unet, text_encoder=text_encoder, tokenizer=tokenizer)


try:
    pipe.enable_xformers_memory_efficient_attention()
except ImportError:
    pass  # run without xformers

pipe = pipe.to(device)

# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    input_image,
    progress=gr.Progress(track_tqdm=True),
):
    # if randomize_seed:
    #     seed = random.randint(0, MAX_SEED)

    # generator = torch.Generator().manual_seed(seed)

    # image = pipe(
    #     prompt=prompt,
    #     negative_prompt=negative_prompt,
    #     guidance_scale=guidance_scale,
    #     num_inference_steps=num_inference_steps,
    #     width=width,
    #     height=height,
    #     generator=generator,
    # ).images[0]
    pipe_out = pipe(
            input_image,
            processing_res=768,
            match_input_res=True,
            batch_size=1,
            color_map="Spectral",
            show_progress_bar=True,
            resample_method="bilinear",
        )

    # depth_pred: np.ndarray = pipe_out.depth_np
    depth_colored: Image.Image = pipe_out.depth_colored


    return depth_colored


# 默认图像路径
example_images = [
    "wild_example/000000000776.jpg",
    "wild_example/800x.jpg",
    "wild_example/000000055950.jpg",
    "wild_example/53441037037_c2cbd91ad2_k.jpg",
    "wild_example/53501906161_6109e3da29_b.jpg",
    "wild_example/m_1e31af1c.jpg",
    "wild_example/sg-11134201-7rd5x-lvlh48byidbqca.jpg"
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
#example-gallery {
    height: 80px; /* 设置缩略图高度 */
    width: auto;  /* 保持宽高比 */
    margin: 0 auto;  /* 图片间距 */
    cursor: pointer; /* 鼠标指针变为手型 */
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("# DepthMaster")
    gr.Markdown("Official demo for DepthMaster. Please refer to our [paper](https://arxiv.org/abs/2501.02576), [project page](https://indu1ge.github.io/DepthMaster_page/), and [github](https://github.com/indu1ge/DepthMaster) for more details.")
    gr.Markdown(" ### Depth Estimation with DepthMaster.")
    # with gr.Column(elem_id="col-container"):
    #     gr.Markdown(" # Depth Estimation")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="pil", elem_id="input-image", interactive=True)
        with gr.Column():
            depth_map = gr.Image(label="Depth Map with Slider View", type="pil", interactive=False, elem_id="depth-map")
        
    # 计算按钮
    compute_button = gr.Button("Compute Depth")

    # # 添加示例图片选择器
    # with gr.Row():
    #     gr.Markdown("### example images")
    # with gr.Row(elem_id="example-gallery"):
    #     example_gallery = gr.Gallery(
    #         label="",
    #         value=example_images,
    #         elem_id="example-gallery",
    #         show_label=False,
    #         interactive=True,
    #         columns=10
    #     )

    # 设置默认图片点击后的操作
    # example_gallery.select(
    #     fn=lambda img_path: img_path,  # 回调函数:返回选择的路径
    #     inputs=[],
    #     outputs=input_image  # 输出设置为 Input Image
    # )
    # example_gallery.click(
    #     fn=load_example,  # 选择图片的回调
    #     inputs=[example_gallery],  # 输入:用户点击的图片
    #     outputs=[input_image]  # 输出:更新 Input Image
    # )


    # 设置计算按钮的回调
    compute_button.click(
        fn=infer,  # 回调函数
        inputs=input_image,  # 输入
        outputs=depth_map  # 输出
    )

# 启动 Gradio 应用
demo.launch()
        # with gr.Column(scale=45):
        #     img_in = gr.Image(type="pil")
        # with gr.Column(scale=45):
        #     img_out = 

        # with gr.Row():
        #     prompt = gr.Text(
        #         label="Prompt",
        #         show_label=False,
        #         max_lines=1,
        #         placeholder="Enter your prompt",
        #         container=False,
        #     )

        #     run_button = gr.Button("Run", scale=0, variant="primary")

        # result = gr.Image(label="Result", show_label=False)

        # with gr.Accordion("Advanced Settings", open=False):
        #     negative_prompt = gr.Text(
        #         label="Negative prompt",
        #         max_lines=1,
        #         placeholder="Enter a negative prompt",
        #         visible=False,
        #     )

        #     seed = gr.Slider(
        #         label="Seed",
        #         minimum=0,
        #         maximum=MAX_SEED,
        #         step=1,
        #         value=0,
        #     )

        #     randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            # with gr.Row():
            #     width = gr.Slider(
            #         label="Width",
            #         minimum=256,
            #         maximum=MAX_IMAGE_SIZE,
            #         step=32,
            #         value=1024,  # Replace with defaults that work for your model
            #     )

            #     height = gr.Slider(
            #         label="Height",
            #         minimum=256,
            #         maximum=MAX_IMAGE_SIZE,
            #         step=32,
            #         value=1024,  # Replace with defaults that work for your model
            #     )

            # with gr.Row():
            #     guidance_scale = gr.Slider(
            #         label="Guidance scale",
            #         minimum=0.0,
            #         maximum=10.0,
            #         step=0.1,
            #         value=0.0,  # Replace with defaults that work for your model
            #     )

            #     num_inference_steps = gr.Slider(
            #         label="Number of inference steps",
            #         minimum=1,
            #         maximum=50,
            #         step=1,
            #         value=2,  # Replace with defaults that work for your model
            #     )

    #     gr.Examples(examples=examples, inputs=[prompt])
    # gr.on(
    #     triggers=[run_button.click, prompt.submit],
    #     fn=infer,
    #     inputs=[
    #         prompt,
    #         negative_prompt,
    #         seed,
    #         randomize_seed,
    #         # width,
    #         # height,
    #         # guidance_scale,
    #         # num_inference_steps,
    #     ],
    #     outputs=[result, seed],
    # )

# if __name__ == "__main__":
#     demo.launch()