Spaces:
Running
Running
File size: 8,046 Bytes
ee133a5 904cde3 ee133a5 5a3d50d 904cde3 5a3d50d 904cde3 5a3d50d ee133a5 5a3d50d 904cde3 ee133a5 5a3d50d ee133a5 5a3d50d ee133a5 5a3d50d ee133a5 5a3d50d ee133a5 5a3d50d ee133a5 5a3d50d ee133a5 5a3d50d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
import os
import torch
from PIL import Image
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
# UNet2DConditionModel,
)
from transformers import CLIPTextModel, CLIPTokenizer
from depthmaster import DepthMasterPipeline
from depthmaster.modules.unet_2d_condition import UNet2DConditionModel
def load_example(example_image):
# 返回选中的图片
return example_image
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "zysong212/DepthMaster" # Replace to the model you would like to use
# if torch.cuda.is_available():
# torch_dtype = torch.float16
# else:
torch_dtype = torch.float32
# pipe = DepthMasterPipeline.from_pretrained('eval', torch_dtype=torch_dtype)
# unet = UNet2DConditionModel.from_pretrained(os.path.join('eval', f'unet'))
# pipe = DepthMasterPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype)
# pipe.unet = unet
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae", torch_dtype=torch_dtype, allow_pickle=False)
unet = UNet2DConditionModel.from_pretrained(model_repo_id, subfolder="unet", torch_dtype=torch_dtype, allow_pickle=False)
text_encoder = CLIPTextModel.from_pretrained(model_repo_id, subfolder="text_encoder", torch_dtype=torch_dtype)
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer", torch_dtype=torch_dtype)
pipe = DepthMasterPipeline(vae=vae, unet=unet, text_encoder=text_encoder, tokenizer=tokenizer)
try:
pipe.enable_xformers_memory_efficient_attention()
except ImportError:
pass # run without xformers
pipe = pipe.to(device)
# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
input_image,
progress=gr.Progress(track_tqdm=True),
):
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# width=width,
# height=height,
# generator=generator,
# ).images[0]
pipe_out = pipe(
input_image,
processing_res=768,
match_input_res=True,
batch_size=1,
color_map="Spectral",
show_progress_bar=True,
resample_method="bilinear",
)
# depth_pred: np.ndarray = pipe_out.depth_np
depth_colored: Image.Image = pipe_out.depth_colored
return depth_colored
# 默认图像路径
example_images = [
"wild_example/000000000776.jpg",
"wild_example/800x.jpg",
"wild_example/000000055950.jpg",
"wild_example/53441037037_c2cbd91ad2_k.jpg",
"wild_example/53501906161_6109e3da29_b.jpg",
"wild_example/m_1e31af1c.jpg",
"wild_example/sg-11134201-7rd5x-lvlh48byidbqca.jpg"
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
#example-gallery {
height: 80px; /* 设置缩略图高度 */
width: auto; /* 保持宽高比 */
margin: 0 auto; /* 图片间距 */
cursor: pointer; /* 鼠标指针变为手型 */
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# DepthMaster")
gr.Markdown("Official demo for DepthMaster. Please refer to our [paper](https://arxiv.org/abs/2501.02576), [project page](https://indu1ge.github.io/DepthMaster_page/), and [github](https://github.com/indu1ge/DepthMaster) for more details.")
gr.Markdown(" ### Depth Estimation with DepthMaster.")
# with gr.Column(elem_id="col-container"):
# gr.Markdown(" # Depth Estimation")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil", elem_id="input-image", interactive=True)
with gr.Column():
depth_map = gr.Image(label="Depth Map with Slider View", type="pil", interactive=False, elem_id="depth-map")
# 计算按钮
compute_button = gr.Button("Compute Depth")
# # 添加示例图片选择器
# with gr.Row():
# gr.Markdown("### example images")
# with gr.Row(elem_id="example-gallery"):
# example_gallery = gr.Gallery(
# label="",
# value=example_images,
# elem_id="example-gallery",
# show_label=False,
# interactive=True,
# columns=10
# )
# 设置默认图片点击后的操作
# example_gallery.select(
# fn=lambda img_path: img_path, # 回调函数:返回选择的路径
# inputs=[],
# outputs=input_image # 输出设置为 Input Image
# )
# example_gallery.click(
# fn=load_example, # 选择图片的回调
# inputs=[example_gallery], # 输入:用户点击的图片
# outputs=[input_image] # 输出:更新 Input Image
# )
# 设置计算按钮的回调
compute_button.click(
fn=infer, # 回调函数
inputs=input_image, # 输入
outputs=depth_map # 输出
)
# 启动 Gradio 应用
demo.launch()
# with gr.Column(scale=45):
# img_in = gr.Image(type="pil")
# with gr.Column(scale=45):
# img_out =
# with gr.Row():
# prompt = gr.Text(
# label="Prompt",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt",
# container=False,
# )
# run_button = gr.Button("Run", scale=0, variant="primary")
# result = gr.Image(label="Result", show_label=False)
# with gr.Accordion("Advanced Settings", open=False):
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a negative prompt",
# visible=False,
# )
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
# )
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=1024, # Replace with defaults that work for your model
# )
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=0.0, # Replace with defaults that work for your model
# )
# num_inference_steps = gr.Slider(
# label="Number of inference steps",
# minimum=1,
# maximum=50,
# step=1,
# value=2, # Replace with defaults that work for your model
# )
# gr.Examples(examples=examples, inputs=[prompt])
# gr.on(
# triggers=[run_button.click, prompt.submit],
# fn=infer,
# inputs=[
# prompt,
# negative_prompt,
# seed,
# randomize_seed,
# # width,
# # height,
# # guidance_scale,
# # num_inference_steps,
# ],
# outputs=[result, seed],
# )
# if __name__ == "__main__":
# demo.launch()
|