File size: 2,663 Bytes
7ddeba9
 
 
 
 
 
 
 
 
a813767
7ddeba9
 
 
 
 
 
 
 
 
 
 
 
 
671cbf4
7ddeba9
 
 
 
 
 
 
 
 
 
 
 
671cbf4
 
 
7ddeba9
671cbf4
 
7ddeba9
 
 
 
 
671cbf4
7ddeba9
 
 
 
 
 
671cbf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ddeba9
 
671cbf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81


import streamlit as st
import pytesseract
from tempfile import NamedTemporaryFile
from langchain.document_loaders import PyPDFLoader
from langchain.llms import CTransformers
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from PIL import Image

def main():
    st.title("Invoice Entity Extractor πŸ“š")

    uploaded_file = st.sidebar.file_uploader("Upload a PDF file", type="pdf")
    uploaded_image = st.sidebar.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])

    if uploaded_file is not None:
        process_pdf(uploaded_file)
    elif uploaded_image is not None:
        process_image(uploaded_image)

def process_pdf(uploaded_file):
    # Process the uploaded PDF file
    with NamedTemporaryFile(delete=False) as temp_file:
        temp_file.write(uploaded_file.read())
        temp_file_path = temp_file.name

    loader = PyPDFLoader(temp_file_path)
    pages = loader.load()

    st.write(f"Number of pages: {len(pages)}")

    for page in pages:
        st.write(page.page_content)

    llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin", model_type="llama",
                config={'max_new_tokens': 128, 'temperature': 0.01})

    template = """Extract invoice number, name of organization, address, date, 
        Qty, Rate, Tax, Amount {pages}
    Output: entity: type
    """
    prompt_template = PromptTemplate(input_variables=["pages"], template=template)
    chain = LLMChain(llm=llm, prompt=prompt_template)

    result = chain.run(pages=pages[0].page_content)

    st.write("Extracted entities:")
    entities = result.strip().split("\n")
    table_data = [line.split(":") for line in entities]
    st.table(table_data)

def process_image(uploaded_image):
    # Process the uploaded image using OCR
    image = Image.open(uploaded_image)
    text = pytesseract.image_to_string(image)

    st.write("Extracted text from the image:")
    st.write(text)

    # Apply entity extraction logic to the extracted text
    llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin", model_type="llama",
                config={'max_new_tokens': 128, 'temperature': 0.01})

    template = """Extract invoice number, name of organization, address, date, 
        Qty, Rate, Tax, Amount {text}
    Output: entity: type
    """
    prompt_template = PromptTemplate(input_variables=["text"], template=template)
    chain = LLMChain(llm=llm, prompt=prompt_template)

    result = chain.run(text)

    st.write("Extracted entities:")
    entities = result.strip().split("\n")
    table_data = [line.split(":") for line in entities]
    st.table(table_data)

if __name__ == "__main__":
    main()