Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import pytesseract
|
5 |
+
from tempfile import NamedTemporaryFile
|
6 |
+
from langchain.document_loaders import PyPDFLoader
|
7 |
+
from langchain.llms import CTransformers
|
8 |
+
from langchain.chains import LLMChain
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
|
11 |
+
def main():
|
12 |
+
st.title("Invoice Entity Extractor 📚")
|
13 |
+
|
14 |
+
uploaded_file = st.sidebar.file_uploader("Upload a PDF file", type="pdf")
|
15 |
+
uploaded_image = st.sidebar.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
16 |
+
|
17 |
+
if uploaded_file is not None:
|
18 |
+
process_pdf(uploaded_file)
|
19 |
+
elif uploaded_image is not None:
|
20 |
+
process_image(uploaded_image)
|
21 |
+
|
22 |
+
def process_pdf(uploaded_file):
|
23 |
+
# Save the uploaded file to a temporary location
|
24 |
+
with NamedTemporaryFile(delete=False) as temp_file:
|
25 |
+
temp_file.write(uploaded_file.read())
|
26 |
+
temp_file_path = temp_file.name
|
27 |
+
|
28 |
+
loader = PyPDFLoader(temp_file_path)
|
29 |
+
pages = loader.load()
|
30 |
+
|
31 |
+
st.write(f"Number of pages: {len(pages)}")
|
32 |
+
|
33 |
+
for page in pages:
|
34 |
+
st.write(page.page_content)
|
35 |
+
|
36 |
+
llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin",model_type="llama",
|
37 |
+
config={'max_new_tokens':128,'temperature':0.01})
|
38 |
+
|
39 |
+
template = """Extract invoice number, name of organization, address, date,
|
40 |
+
Qty, Rate ,Tax ,Amount {pages}
|
41 |
+
Output : entity : type
|
42 |
+
"""
|
43 |
+
prompt_template = PromptTemplate(input_variables=["pages"], template=template)
|
44 |
+
chain = LLMChain(llm=llm, prompt=prompt_template)
|
45 |
+
|
46 |
+
result = chain.run(pages=pages[0].page_content)
|
47 |
+
|
48 |
+
st.write("Extracted entities:")
|
49 |
+
entities = result.strip().split("\n")
|
50 |
+
table_data = [line.split(":") for line in entities]
|
51 |
+
st.table(table_data)
|
52 |
+
|
53 |
+
def process_image(uploaded_image):
|
54 |
+
# Process the uploaded image
|
55 |
+
st.write("Image processing is not implemented yet.")
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
main()
|