gradio.chat.app-HFIPs / mcp_client.py
ysharma's picture
ysharma HF Staff
Update mcp_client.py
beb0d58 verified
raw
history blame
43.5 kB
"""
MCP Client implementation for Universal MCP Client
Enhanced with HuggingFace Inference Provider support
"""
import asyncio
import json
import re
import base64
from typing import Dict, Optional, Tuple, List, Any
import anthropic
import logging
import traceback
# Import the proper MCP client components
from mcp import ClientSession
from mcp.client.sse import sse_client
from config import MCPServerConfig, AppConfig, HTTPX_AVAILABLE, HF_INFERENCE_AVAILABLE
logger = logging.getLogger(__name__)
if HF_INFERENCE_AVAILABLE:
from huggingface_hub import InferenceClient
class UniversalMCPClient:
"""Universal MCP Client for connecting to various MCP servers with multiple LLM backends"""
def __init__(self):
self.servers: Dict[str, MCPServerConfig] = {}
self.anthropic_client = None
self.hf_client = None
self.current_provider = None
self.current_model = None
# Initialize Anthropic client if API key is available
if AppConfig.ANTHROPIC_API_KEY:
self.anthropic_client = anthropic.Anthropic(
api_key=AppConfig.ANTHROPIC_API_KEY
)
logger.info("βœ… Anthropic client initialized")
else:
logger.warning("⚠️ ANTHROPIC_API_KEY not found")
# Initialize HuggingFace client if available
if HF_INFERENCE_AVAILABLE and AppConfig.HF_TOKEN:
logger.info("βœ… HuggingFace Hub available")
else:
logger.warning("⚠️ HF_TOKEN not found or huggingface_hub not available")
def configure_inference_provider(self, provider: str, model: str) -> bool:
"""Configure the inference provider and model"""
try:
if not HF_INFERENCE_AVAILABLE:
logger.error("HuggingFace Hub not available")
return False
if not AppConfig.HF_TOKEN:
logger.error("HF_TOKEN not configured")
return False
self.hf_client = InferenceClient(
provider=provider,
api_key=AppConfig.HF_TOKEN
)
self.current_provider = provider
self.current_model = model
logger.info(f"βœ… Configured inference provider: {provider} with model: {model}")
return True
except Exception as e:
logger.error(f"Failed to configure inference provider: {e}")
return False
def get_current_llm_backend(self) -> str:
"""Get the currently configured LLM backend"""
if self.current_provider and self.hf_client:
return f"HF Inference Provider: {self.current_provider}"
elif self.anthropic_client:
return "Anthropic Claude Sonnet 4"
else:
return "No LLM backend configured"
async def add_server_async(self, config: MCPServerConfig) -> Tuple[bool, str]:
"""Add an MCP server using pure MCP protocol"""
try:
logger.info(f"πŸ”§ Adding MCP server: {config.name} at {config.url}")
# Clean and validate URL - handle various input formats
original_url = config.url.strip()
# Remove common MCP endpoint variations
base_url = original_url
for endpoint in ["/gradio_api/mcp/sse", "/gradio_api/mcp/", "/gradio_api/mcp"]:
if base_url.endswith(endpoint):
base_url = base_url[:-len(endpoint)]
break
# Remove trailing slashes
base_url = base_url.rstrip("/")
# Construct proper MCP URL
mcp_url = f"{base_url}/gradio_api/mcp/sse"
logger.info(f"πŸ”§ Original URL: {original_url}")
logger.info(f"πŸ”§ Base URL: {base_url}")
logger.info(f"πŸ”§ MCP URL: {mcp_url}")
# Extract space ID if it's a HuggingFace space
if "hf.space" in base_url:
space_parts = base_url.split("/")
if len(space_parts) >= 1:
space_id = space_parts[-1].replace('.hf.space', '').replace('https://', '').replace('http://', '')
if '-' in space_id:
# Format: username-spacename.hf.space
config.space_id = space_id.replace('-', '/', 1)
else:
config.space_id = space_id
logger.info(f"πŸ“ Detected HF Space ID: {config.space_id}")
# Update config with proper MCP URL
config.url = mcp_url
# Test MCP connection
success, message = await self._test_mcp_connection(config)
if success:
self.servers[config.name] = config
logger.info(f"βœ… MCP Server {config.name} added successfully")
return True, f"βœ… Successfully added MCP server: {config.name}\n{message}"
else:
logger.error(f"❌ Failed to connect to MCP server {config.name}: {message}")
return False, f"❌ Failed to add server: {config.name}\n{message}"
except Exception as e:
error_msg = f"Failed to add server {config.name}: {str(e)}"
logger.error(error_msg)
logger.error(traceback.format_exc())
return False, f"❌ {error_msg}"
async def _test_mcp_connection(self, config: MCPServerConfig) -> Tuple[bool, str]:
"""Test MCP server connection with detailed debugging"""
try:
logger.info(f"πŸ” Testing MCP connection to {config.url}")
async with sse_client(config.url, timeout=AppConfig.MCP_TIMEOUT_SECONDS) as (read_stream, write_stream):
async with ClientSession(read_stream, write_stream) as session:
# Initialize MCP session
logger.info("πŸ”§ Initializing MCP session...")
await session.initialize()
# List available tools
logger.info("πŸ“‹ Listing available tools...")
tools = await session.list_tools()
tool_info = []
for tool in tools.tools:
tool_info.append(f" - {tool.name}: {tool.description}")
logger.info(f" πŸ“ Tool: {tool.name}")
logger.info(f" Description: {tool.description}")
if hasattr(tool, 'inputSchema') and tool.inputSchema:
logger.info(f" Input Schema: {tool.inputSchema}")
if len(tools.tools) == 0:
return False, "No tools found on MCP server"
message = f"Connected successfully!\nFound {len(tools.tools)} tools:\n" + "\n".join(tool_info)
return True, message
except asyncio.TimeoutError:
return False, "Connection timeout - server may be sleeping or unreachable"
except Exception as e:
logger.error(f"MCP connection failed: {e}")
logger.error(traceback.format_exc())
return False, f"Connection failed: {str(e)}"
async def call_llm_with_mcp(self, messages: List[Dict[str, Any]], user_files: List[str]) -> List[Any]:
"""Call LLM with MCP servers - handles both Anthropic and HF providers"""
if self.current_provider and self.hf_client:
# Use HuggingFace Inference Provider with custom MCP implementation
return await self._call_hf_with_custom_mcp(messages, user_files)
elif self.anthropic_client:
# Use Anthropic's native MCP support
return self._call_anthropic_with_native_mcp(messages, user_files)
else:
raise ValueError("No LLM backend configured")
def _call_anthropic_with_native_mcp(self, messages: List[Dict[str, Any]], user_files: List[str]) -> List[Any]:
"""Call Anthropic API with native MCP support (existing implementation)"""
if not self.servers:
return self._call_claude_without_mcp(messages)
mcp_servers = []
for server_name, config in self.servers.items():
mcp_servers.append({
"type": "url",
"url": config.url,
"name": server_name.replace(" ", "_").lower()
})
# Enhanced system prompt with multimodal and MCP instructions
system_prompt = self._get_anthropic_mcp_system_prompt(user_files)
# Debug logging
logger.info(f"πŸ“€ Sending {len(messages)} messages to Claude API")
logger.info(f"πŸ”§ Using {len(mcp_servers)} MCP servers")
start_time = time.time()
# Call Claude with MCP connector using the correct beta API
response = self.anthropic_client.beta.messages.create(
model=AppConfig.CLAUDE_MODEL,
max_tokens=AppConfig.MAX_TOKENS,
system=system_prompt,
messages=messages,
mcp_servers=mcp_servers,
betas=[AppConfig.MCP_BETA_VERSION]
)
return self._process_mcp_response(response, start_time)
async def _call_hf_with_custom_mcp(self, messages: List[Dict[str, Any]], user_files: List[str]) -> List[Any]:
"""Call HuggingFace Inference Provider with custom MCP implementation"""
from gradio import ChatMessage
import time
# Get available tools from MCP servers
available_tools = await self._get_mcp_tools()
if not available_tools:
# No MCP tools available, use regular chat completion
return await self._call_hf_without_mcp(messages)
# Enhanced system prompt for HF providers with MCP
system_prompt = self._get_hf_mcp_system_prompt(user_files, available_tools)
# Add system message if not present
if not messages or messages[0].get("role") != "system":
messages.insert(0, {"role": "system", "content": system_prompt})
else:
messages[0]["content"] = system_prompt
chat_messages = []
max_iterations = 5 # Prevent infinite loops
iteration = 0
while iteration < max_iterations:
iteration += 1
logger.info(f"πŸ”„ HF+MCP Iteration {iteration}")
# Call HuggingFace model
try:
completion = self.hf_client.chat.completions.create(
model=self.current_model,
messages=messages,
max_tokens=AppConfig.MAX_TOKENS,
temperature=0.7
)
response_content = completion.choices[0].message.content
logger.info(f"πŸ“ HF Response: {response_content[:200]}...")
# Check if model wants to use tools
tool_calls = self._extract_tool_calls_from_response(response_content)
if not tool_calls:
# No tool calls, return final response
chat_messages.append(ChatMessage(
role="assistant",
content=response_content
))
break
# Execute tool calls
for tool_call in tool_calls:
tool_name = tool_call.get("name")
tool_args = tool_call.get("arguments", {})
# Add thinking message for tool usage
chat_messages.append(ChatMessage(
role="assistant",
content="",
metadata={
"title": f"πŸ”§ Using {tool_name}",
"id": f"tool_{iteration}",
"status": "pending",
"log": f"Calling MCP tool: {tool_name}"
}
))
# Execute tool via MCP
tool_result = await self._execute_mcp_tool(tool_name, tool_args)
# Update tool status
for msg in chat_messages:
if (msg.metadata and
msg.metadata.get("id") == f"tool_{iteration}" and
msg.metadata.get("status") == "pending"):
msg.metadata["status"] = "done"
break
# Add tool result
chat_messages.append(ChatMessage(
role="assistant",
content=tool_result,
metadata={
"title": "πŸ“‹ Tool Result",
"parent_id": f"tool_{iteration}",
"status": "done"
}
))
# Add tool result to conversation context
messages.append({
"role": "assistant",
"content": f"I used the tool {tool_name} and got this result: {tool_result}"
})
# Check for media in tool result
media_url = self._extract_media_from_tool_result(tool_result)
if media_url:
chat_messages.append(ChatMessage(
role="assistant",
content={"path": media_url}
))
# Continue conversation with tool results
messages.append({
"role": "user",
"content": "Please provide a summary of the results and help with the user's original request."
})
except Exception as e:
logger.error(f"Error in HF+MCP iteration {iteration}: {e}")
chat_messages.append(ChatMessage(
role="assistant",
content=f"❌ Error during tool execution: {str(e)}"
))
break
if not chat_messages:
chat_messages.append(ChatMessage(
role="assistant",
content="I understand your request and I'm here to help."
))
return chat_messages
async def _get_mcp_tools(self) -> List[Dict[str, Any]]:
"""Get available tools from all MCP servers"""
tools = []
for server_name, config in self.servers.items():
try:
async with sse_client(config.url, timeout=AppConfig.MCP_TIMEOUT_SECONDS) as (read_stream, write_stream):
async with ClientSession(read_stream, write_stream) as session:
await session.initialize()
server_tools = await session.list_tools()
for tool in server_tools.tools:
tools.append({
"name": tool.name,
"description": tool.description,
"server": server_name,
"schema": tool.inputSchema if hasattr(tool, 'inputSchema') else {}
})
except Exception as e:
logger.error(f"Failed to get tools from {server_name}: {e}")
return tools
def _extract_tool_calls_from_response(self, response: str) -> List[Dict[str, Any]]:
"""Extract tool calls from LLM response text"""
# Look for tool call patterns in the response
# This is a simple implementation - you might want to make this more robust
import re
tool_calls = []
# Pattern to match tool calls like: CALL_TOOL: tool_name(arg1="value1", arg2="value2")
pattern = r'CALL_TOOL:\s*(\w+)\((.*?)\)'
matches = re.findall(pattern, response)
for match in matches:
tool_name = match[0]
args_str = match[1]
# Simple argument parsing (you might want to improve this)
args = {}
if args_str:
arg_pairs = args_str.split(',')
for pair in arg_pairs:
if '=' in pair:
key, value = pair.split('=', 1)
key = key.strip().strip('"').strip("'")
value = value.strip().strip('"').strip("'")
args[key] = value
tool_calls.append({
"name": tool_name,
"arguments": args
})
return tool_calls
async def _execute_mcp_tool(self, tool_name: str, arguments: Dict[str, Any]) -> str:
"""Execute a tool via MCP servers"""
for server_name, config in self.servers.items():
try:
async with sse_client(config.url, timeout=AppConfig.MCP_TIMEOUT_SECONDS) as (read_stream, write_stream):
async with ClientSession(read_stream, write_stream) as session:
await session.initialize()
# Check if this server has the tool
tools = await session.list_tools()
tool_found = False
for tool in tools.tools:
if tool.name == tool_name:
tool_found = True
break
if not tool_found:
continue
# Call the tool
result = await session.call_tool(tool_name, arguments)
if result.content:
return result.content[0].text if hasattr(result.content[0], 'text') else str(result.content[0])
else:
return "Tool executed successfully but returned no content"
except Exception as e:
logger.error(f"Failed to execute tool {tool_name} on {server_name}: {e}")
return f"❌ Failed to execute tool: {tool_name}"
def _extract_media_from_tool_result(self, result: str) -> Optional[str]:
"""Extract media URL from tool result"""
# Use existing media extraction logic
if not self.servers:
return None
# Use the first server's config for media extraction
config = next(iter(self.servers.values()))
return self._extract_media_from_mcp_response(result, config)
async def _call_hf_without_mcp(self, messages: List[Dict[str, Any]]) -> List[Any]:
"""Call HuggingFace provider without MCP"""
from gradio import ChatMessage
try:
completion = self.hf_client.chat.completions.create(
model=self.current_model,
messages=messages,
max_tokens=AppConfig.MAX_TOKENS,
temperature=0.7
)
response_content = completion.choices[0].message.content
return [ChatMessage(role="assistant", content=response_content)]
except Exception as e:
logger.error(f"HF inference error: {e}")
return [ChatMessage(role="assistant", content=f"❌ Error: {str(e)}")]
def _call_claude_without_mcp(self, messages: List[Dict[str, Any]]) -> List[Any]:
"""Call Claude API without MCP servers (existing implementation)"""
from gradio import ChatMessage
import time
logger.info("πŸ’¬ No MCP servers available, using regular Claude chat")
system_prompt = self._get_native_system_prompt()
# Use regular messages API
response = self.anthropic_client.messages.create(
model=AppConfig.CLAUDE_MODEL,
max_tokens=AppConfig.MAX_TOKENS,
system=system_prompt,
messages=messages
)
response_text = ""
for content in response.content:
if content.type == "text":
response_text += content.text
if not response_text:
response_text = "I understand your request and I'm here to help."
return [ChatMessage(role="assistant", content=response_text)]
def _get_native_system_prompt(self) -> str:
"""Get system prompt for Claude without MCP servers"""
from datetime import datetime
return f"""You are Claude Sonnet 4, a helpful AI assistant with native multimodal capabilities. You can have conversations, answer questions, help with various tasks, and provide information on a wide range of topics.
YOUR NATIVE CAPABILITIES (Available right now):
- **Image Understanding**: You can directly see and describe images, analyze their content, read text in images, identify objects, people, scenes, etc.
- **Text Processing**: You can analyze, summarize, translate, and process text directly
- **General Knowledge**: You can answer questions, explain concepts, and have conversations
- **Code Analysis**: You can read, analyze, and explain code
Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
IMPORTANT: You DO NOT need MCP servers for:
- Describing or analyzing uploaded images
- Reading text in images
- Identifying objects, people, or scenes in images
- General conversation and knowledge questions
You DO need MCP servers for:
- Creating new images, audio, or video
- Editing or transforming existing media files
- Transcribing audio files
- Processing non-image files (audio, video, documents)
If users upload images and ask you to describe or analyze them, use your native vision capabilities immediately. Only mention MCP servers if they ask for creation or editing tasks."""
def _get_anthropic_mcp_system_prompt(self, user_files: List[str]) -> str:
"""Get system prompt for Claude with MCP servers (existing implementation)"""
from datetime import datetime
uploaded_files_context = ""
if user_files:
uploaded_files_context = f"\n\nFILES UPLOADED BY USER:\n"
for i, file_path in enumerate(user_files, 1):
file_name = file_path.split('/')[-1] if '/' in file_path else file_path
if AppConfig.is_image_file(file_path):
file_type = "Image"
elif AppConfig.is_audio_file(file_path):
file_type = "Audio"
elif AppConfig.is_video_file(file_path):
file_type = "Video"
else:
file_type = "File"
uploaded_files_context += f"{i}. {file_type}: {file_name} (path: {file_path})\n"
return f"""You are Claude Sonnet 4, a helpful AI assistant with both native multimodal capabilities and access to various MCP tools.
YOUR NATIVE CAPABILITIES (No MCP tools needed):
- **Image Understanding**: You can directly see and describe images, analyze their content, read text in images, etc.
- **Text Processing**: You can analyze, summarize, translate, and process text directly
- **General Knowledge**: You can answer questions, explain concepts, and have conversations
- **Code Analysis**: You can read, analyze, and explain code
WHEN TO USE MCP TOOLS:
- **Image Generation**: Creating new images from text prompts
- **Image Editing**: Modifying, enhancing, or transforming existing images
- **Audio Processing**: Transcribing audio, generating speech, audio enhancement
- **Video Processing**: Creating or editing videos
- **Specialized Analysis**: Tasks requiring specific models or APIs
UPLOADED FILES HANDLING:
{uploaded_files_context}
IMPORTANT - For uploaded images:
- **Image Description/Analysis**: Use your NATIVE vision capabilities - you can see and describe images directly
- **Image Editing/Enhancement**: Use MCP image processing tools
- **Image Generation**: Use MCP image generation tools
IMPORTANT - GRADIO MEDIA DISPLAY:
When MCP tools return media, end your response with "MEDIA_GENERATED: [URL]" where [URL] is the actual media URL.
Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
Available MCP servers: {list(self.servers.keys())}"""
def _get_hf_mcp_system_prompt(self, user_files: List[str], available_tools: List[Dict[str, Any]]) -> str:
"""Get system prompt for HuggingFace providers with MCP"""
from datetime import datetime
uploaded_files_context = ""
if user_files:
uploaded_files_context = f"\n\nFILES UPLOADED BY USER:\n"
for i, file_path in enumerate(user_files, 1):
file_name = file_path.split('/')[-1] if '/' in file_path else file_path
if AppConfig.is_image_file(file_path):
file_type = "Image"
elif AppConfig.is_audio_file(file_path):
file_type = "Audio"
elif AppConfig.is_video_file(file_path):
file_type = "Video"
else:
file_type = "File"
uploaded_files_context += f"{i}. {file_type}: {file_name} (path: {file_path})\n"
tools_context = ""
if available_tools:
tools_context = f"\n\nAVAILABLE MCP TOOLS:\n"
for tool in available_tools:
tools_context += f"- {tool['name']}: {tool['description']} (server: {tool['server']})\n"
tools_context += f"\nTo use a tool, respond with: CALL_TOOL: tool_name(arg1=\"value1\", arg2=\"value2\")\n"
return f"""You are an AI assistant using {self.current_provider} inference with {self.current_model}. You have access to external tools via MCP (Model Context Protocol).
YOUR CAPABILITIES:
- **Text Processing**: You can analyze, summarize, translate, and process text directly
- **General Knowledge**: You can answer questions, explain concepts, and have conversations
- **Code Analysis**: You can read, analyze, and explain code
- **Tool Usage**: You can call external tools to extend your capabilities
UPLOADED FILES HANDLING:
{uploaded_files_context}
{tools_context}
IMPORTANT INSTRUCTIONS:
- For complex tasks requiring specialized capabilities, use the available MCP tools
- When you need to use a tool, clearly indicate it with the CALL_TOOL format
- After using tools, provide a clear summary of the results to the user
- If a tool returns media (images, audio, video), describe what was generated/processed
Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
Current LLM: {self.current_provider}/{self.current_model}
Available MCP servers: {list(self.servers.keys())}"""
# Include existing helper methods from original implementation
def _extract_media_from_mcp_response(self, result_text: str, config: MCPServerConfig) -> Optional[str]:
"""Enhanced media extraction from MCP responses (existing implementation)"""
if not isinstance(result_text, str):
logger.info(f"πŸ” Non-string result: {type(result_text)}")
return None
base_url = config.url.replace("/gradio_api/mcp/sse", "")
logger.info(f"πŸ” Processing MCP result for media: {result_text[:300]}...")
logger.info(f"πŸ” Base URL: {base_url}")
# 1. Try to parse as JSON (most Gradio MCP servers return structured data)
try:
if result_text.strip().startswith('[') or result_text.strip().startswith('{'):
logger.info("πŸ” Attempting JSON parse...")
data = json.loads(result_text.strip())
logger.info(f"πŸ” Parsed JSON structure: {data}")
# Handle array format: [{'image': {'url': '...'}}] or [{'url': '...'}]
if isinstance(data, list) and len(data) > 0:
item = data[0]
logger.info(f"πŸ” First array item: {item}")
if isinstance(item, dict):
# Check for nested media structure
for media_type in ['image', 'audio', 'video']:
if media_type in item and isinstance(item[media_type], dict):
media_data = item[media_type]
if 'url' in media_data:
url = media_data['url']
logger.info(f"🎯 Found {media_type} URL: {url}")
return self._resolve_media_url(url, base_url)
# Check for direct URL
if 'url' in item:
url = item['url']
logger.info(f"🎯 Found direct URL: {url}")
return self._resolve_media_url(url, base_url)
# Handle object format: {'image': {'url': '...'}} or {'url': '...'}
elif isinstance(data, dict):
logger.info(f"πŸ” Processing dict: {data}")
# Check for nested media structure
for media_type in ['image', 'audio', 'video']:
if media_type in data and isinstance(data[media_type], dict):
media_data = data[media_type]
if 'url' in media_data:
url = media_data['url']
logger.info(f"🎯 Found {media_type} URL: {url}")
return self._resolve_media_url(url, base_url)
# Check for direct URL
if 'url' in data:
url = data['url']
logger.info(f"🎯 Found direct URL: {url}")
return self._resolve_media_url(url, base_url)
except json.JSONDecodeError:
logger.info("πŸ” Not valid JSON, trying other formats...")
except Exception as e:
logger.warning(f"πŸ” JSON parsing error: {e}")
# 2. Check for data URLs (base64 encoded media)
if result_text.startswith('data:'):
logger.info("🎯 Found data URL")
return result_text
# 3. Check for base64 image patterns
if any(result_text.startswith(pattern) for pattern in ['iVBORw0KGgoAAAANSUhEU', '/9j/', 'UklGR']):
logger.info("🎯 Found base64 image data")
return f"data:image/png;base64,{result_text}"
# 4. Check for file paths and convert to URLs
if AppConfig.is_media_file(result_text):
# Extract just the filename if it's a path
if '/' in result_text:
filename = result_text.split('/')[-1]
else:
filename = result_text.strip()
# Create Gradio file URL
if filename.startswith('http'):
media_url = filename
else:
media_url = f"{base_url}/file={filename}"
logger.info(f"🎯 Found media file: {media_url}")
return media_url
# 5. Check for HTTP URLs that look like media
if result_text.startswith('http') and AppConfig.is_media_file(result_text):
logger.info(f"🎯 Found HTTP media URL: {result_text}")
return result_text
logger.info("❌ No media detected in result")
return None
def _resolve_media_url(self, url: str, base_url: str) -> str:
"""Resolve relative URLs to absolute URLs"""
if url.startswith('http') or url.startswith('data:'):
return url
elif url.startswith('/'):
return f"{base_url}/file={url}"
else:
return f"{base_url}/file={url}"
def _process_mcp_response(self, response, start_time: float) -> List[Any]:
"""Process Claude's response with MCP tool calls into structured ChatMessage objects (existing implementation)"""
from gradio import ChatMessage
import time
chat_messages = []
current_tool_id = None
current_server_name = None
tool_start_time = None
text_segments = [] # Collect text segments separately
# Process Claude's response
for content in response.content:
if content.type == "text":
# Collect text segments but don't combine them yet
text_content = content.text
# Check if Claude indicated media was generated
if "MEDIA_GENERATED:" in text_content:
media_match = re.search(r"MEDIA_GENERATED:\s*([^\s]+)", text_content)
if media_match:
media_url = media_match.group(1)
# Clean up the response text
text_content = re.sub(r"MEDIA_GENERATED:\s*[^\s]+", "", text_content).strip()
logger.info(f"🎯 Claude indicated media generated: {media_url}")
# Add media as separate message
chat_messages.append(ChatMessage(
role="assistant",
content={"path": media_url}
))
if text_content.strip():
text_segments.append(text_content.strip())
elif hasattr(content, 'type') and content.type == "mcp_tool_use":
# Add any accumulated text before tool use
if text_segments:
combined_text = " ".join(text_segments)
if combined_text.strip():
chat_messages.append(ChatMessage(
role="assistant",
content=combined_text.strip()
))
text_segments = [] # Reset
tool_name = content.name
server_name = content.server_name
current_tool_id = getattr(content, 'id', 'unknown')
current_server_name = server_name
tool_start_time = time.time()
logger.info(f"πŸ”§ Claude used MCP tool: {tool_name} on server: {server_name}")
# Create a "thinking" message for tool usage
chat_messages.append(ChatMessage(
role="assistant",
content="",
metadata={
"title": f"πŸ”§ Using {tool_name}",
"id": current_tool_id,
"status": "pending",
"log": f"Server: {server_name}"
}
))
elif hasattr(content, 'type') and content.type == "mcp_tool_result":
tool_use_id = getattr(content, 'tool_use_id', 'unknown')
duration = time.time() - tool_start_time if tool_start_time else None
logger.info(f"πŸ“ Processing MCP tool result (tool_use_id: {tool_use_id})")
# Update the pending tool message to completed
for msg in chat_messages:
if (msg.metadata and
msg.metadata.get("id") == current_tool_id and
msg.metadata.get("status") == "pending"):
msg.metadata["status"] = "done"
if duration:
msg.metadata["duration"] = round(duration, 2)
break
media_url = None
if content.content:
result_content = content.content[0]
result_text = result_content.text if hasattr(result_content, 'text') else str(result_content)
logger.info(f"πŸ“ MCP tool result: {result_text[:200]}...")
# Try to extract media URL from the result
if current_server_name and current_server_name in self.servers:
config = self.servers[current_server_name]
extracted_media = self._extract_media_from_mcp_response(result_text, config)
if extracted_media:
media_url = extracted_media
logger.info(f"🎯 Extracted media from MCP result: {media_url}")
else:
# Fallback: try all servers to find media
for server_name, config in self.servers.items():
extracted_media = self._extract_media_from_mcp_response(result_text, config)
if extracted_media:
media_url = extracted_media
logger.info(f"🎯 Extracted media from MCP result (fallback): {media_url}")
break
# Always show the full tool result
chat_messages.append(ChatMessage(
role="assistant",
content=result_text,
metadata={
"title": "πŸ“‹ Tool Result",
"parent_id": current_tool_id,
"status": "done"
}
))
# Only add separate media display if the tool result does NOT contain
# any Gradio file data structures that would be auto-rendered
if media_url and not self._contains_gradio_file_structure(result_text):
logger.info(f"🎯 Adding separate media display for: {media_url}")
chat_messages.append(ChatMessage(
role="assistant",
content={"path": media_url}
))
else:
if media_url:
logger.info(f"🚫 Skipping separate media - tool result contains Gradio file structure")
else:
logger.info(f"🚫 No media URL extracted")
else:
# Add error message for failed tool call
chat_messages.append(ChatMessage(
role="assistant",
content="Tool call failed: No content returned",
metadata={
"title": "❌ Tool Error",
"parent_id": current_tool_id,
"status": "done"
}
))
# Add any remaining text segments after all processing
if text_segments:
combined_text = " ".join(text_segments)
if combined_text.strip():
chat_messages.append(ChatMessage(
role="assistant",
content=combined_text.strip()
))
# Fallback if no content was processed
if not chat_messages:
chat_messages.append(ChatMessage(
role="assistant",
content="I understand your request and I'm here to help."
))
return chat_messages
def _contains_gradio_file_structure(self, text: str) -> bool:
"""Check if the text contains ANY Gradio file data structures that would be auto-rendered (existing implementation)"""
# Check for key indicators of Gradio file structures
gradio_indicators = [
# Gradio FileData type indicators
"'_type': 'gradio.FileData'",
'"_type": "gradio.FileData"',
'gradio.FileData',
# File structure patterns
"'path':",
'"path":',
"'url':",
'"url":',
"'orig_name':",
'"orig_name":',
"'mime_type':",
'"mime_type":',
'is_stream',
'meta_type',
# Common file result patterns
"{'image':",
'{"image":',
"{'audio':",
'{"audio":',
"{'video':",
'{"video":',
"{'file':",
'{"file":',
# List patterns that typically contain file objects
"[{'image'",
'[{"image"',
"[{'audio'",
'[{"audio"',
"[{'video'",
'[{"video"',
"[{'file'",
'[{"file"'
]
# If we find multiple indicators, it's likely a Gradio file structure
indicator_count = sum(1 for indicator in gradio_indicators if indicator in text)
# Also check for simple URL patterns (for audio case)
is_simple_url = (text.strip().startswith('http') and
len(text.strip().split()) == 1 and
any(ext in text.lower() for ext in ['.wav', '.mp3', '.mp4', '.png', '.jpg', '.jpeg', '.gif', '.svg', '.webm', '.ogg']))
result = indicator_count >= 2 or is_simple_url
logger.debug(f"πŸ“‹ File structure check: {indicator_count} indicators, simple_url: {is_simple_url}, result: {result}")
return result
def get_server_status(self) -> Dict[str, str]:
"""Get status of all configured servers"""
status = {}
for name in self.servers:
compatibility = self._check_file_upload_compatibility(self.servers[name])
status[name] = f"βœ… Connected (MCP Protocol) - {compatibility}"
return status
def _check_file_upload_compatibility(self, config: MCPServerConfig) -> str:
"""Check if a server likely supports file uploads"""
if "hf.space" in config.url:
return "🟑 Hugging Face Space (usually compatible)"
elif "gradio" in config.url.lower():
return "🟒 Gradio server (likely compatible)"
elif "localhost" in config.url or "127.0.0.1" in config.url:
return "🟒 Local server (file access available)"
else:
return "πŸ”΄ Remote server (may need public URLs)"