File size: 43,488 Bytes
f0735e5
 
beb0d58
f0735e5
 
 
 
 
beb0d58
f0735e5
 
 
 
 
 
 
 
beb0d58
f0735e5
 
 
beb0d58
 
 
f0735e5
beb0d58
f0735e5
 
 
 
beb0d58
 
 
f0735e5
 
 
 
 
 
 
 
 
beb0d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0735e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb0d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0735e5
beb0d58
f0735e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb0d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0735e5
beb0d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0735e5
beb0d58
 
 
 
 
 
 
 
 
f0735e5
beb0d58
 
 
 
 
 
 
 
 
 
 
f0735e5
beb0d58
 
 
 
 
 
 
 
 
f0735e5
beb0d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0735e5
 
 
 
 
 
 
 
 
 
beb0d58
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
"""
MCP Client implementation for Universal MCP Client
Enhanced with HuggingFace Inference Provider support
"""
import asyncio
import json
import re
import base64
from typing import Dict, Optional, Tuple, List, Any
import anthropic
import logging
import traceback

# Import the proper MCP client components
from mcp import ClientSession
from mcp.client.sse import sse_client

from config import MCPServerConfig, AppConfig, HTTPX_AVAILABLE, HF_INFERENCE_AVAILABLE

logger = logging.getLogger(__name__)

if HF_INFERENCE_AVAILABLE:
    from huggingface_hub import InferenceClient

class UniversalMCPClient:
    """Universal MCP Client for connecting to various MCP servers with multiple LLM backends"""
    
    def __init__(self):
        self.servers: Dict[str, MCPServerConfig] = {}
        self.anthropic_client = None
        self.hf_client = None
        self.current_provider = None
        self.current_model = None
        
        # Initialize Anthropic client if API key is available
        if AppConfig.ANTHROPIC_API_KEY:
            self.anthropic_client = anthropic.Anthropic(
                api_key=AppConfig.ANTHROPIC_API_KEY
            )
            logger.info("βœ… Anthropic client initialized")
        else:
            logger.warning("⚠️ ANTHROPIC_API_KEY not found")
        
        # Initialize HuggingFace client if available
        if HF_INFERENCE_AVAILABLE and AppConfig.HF_TOKEN:
            logger.info("βœ… HuggingFace Hub available")
        else:
            logger.warning("⚠️ HF_TOKEN not found or huggingface_hub not available")
    
    def configure_inference_provider(self, provider: str, model: str) -> bool:
        """Configure the inference provider and model"""
        try:
            if not HF_INFERENCE_AVAILABLE:
                logger.error("HuggingFace Hub not available")
                return False
            
            if not AppConfig.HF_TOKEN:
                logger.error("HF_TOKEN not configured")
                return False
            
            self.hf_client = InferenceClient(
                provider=provider,
                api_key=AppConfig.HF_TOKEN
            )
            self.current_provider = provider
            self.current_model = model
            
            logger.info(f"βœ… Configured inference provider: {provider} with model: {model}")
            return True
            
        except Exception as e:
            logger.error(f"Failed to configure inference provider: {e}")
            return False
    
    def get_current_llm_backend(self) -> str:
        """Get the currently configured LLM backend"""
        if self.current_provider and self.hf_client:
            return f"HF Inference Provider: {self.current_provider}"
        elif self.anthropic_client:
            return "Anthropic Claude Sonnet 4"
        else:
            return "No LLM backend configured"
    
    async def add_server_async(self, config: MCPServerConfig) -> Tuple[bool, str]:
        """Add an MCP server using pure MCP protocol"""
        try:
            logger.info(f"πŸ”§ Adding MCP server: {config.name} at {config.url}")
            
            # Clean and validate URL - handle various input formats
            original_url = config.url.strip()
            
            # Remove common MCP endpoint variations
            base_url = original_url
            for endpoint in ["/gradio_api/mcp/sse", "/gradio_api/mcp/", "/gradio_api/mcp"]:
                if base_url.endswith(endpoint):
                    base_url = base_url[:-len(endpoint)]
                    break
            
            # Remove trailing slashes
            base_url = base_url.rstrip("/")
            
            # Construct proper MCP URL
            mcp_url = f"{base_url}/gradio_api/mcp/sse"
            
            logger.info(f"πŸ”§ Original URL: {original_url}")
            logger.info(f"πŸ”§ Base URL: {base_url}")  
            logger.info(f"πŸ”§ MCP URL: {mcp_url}")
            
            # Extract space ID if it's a HuggingFace space
            if "hf.space" in base_url:
                space_parts = base_url.split("/")
                if len(space_parts) >= 1:
                    space_id = space_parts[-1].replace('.hf.space', '').replace('https://', '').replace('http://', '')
                    if '-' in space_id:
                        # Format: username-spacename.hf.space
                        config.space_id = space_id.replace('-', '/', 1)
                    else:
                        config.space_id = space_id
                    logger.info(f"πŸ“ Detected HF Space ID: {config.space_id}")
            
            # Update config with proper MCP URL
            config.url = mcp_url
            
            # Test MCP connection
            success, message = await self._test_mcp_connection(config)
            
            if success:
                self.servers[config.name] = config
                logger.info(f"βœ… MCP Server {config.name} added successfully")
                return True, f"βœ… Successfully added MCP server: {config.name}\n{message}"
            else:
                logger.error(f"❌ Failed to connect to MCP server {config.name}: {message}")
                return False, f"❌ Failed to add server: {config.name}\n{message}"
                
        except Exception as e:
            error_msg = f"Failed to add server {config.name}: {str(e)}"
            logger.error(error_msg)
            logger.error(traceback.format_exc())
            return False, f"❌ {error_msg}"
    
    async def _test_mcp_connection(self, config: MCPServerConfig) -> Tuple[bool, str]:
        """Test MCP server connection with detailed debugging"""
        try:
            logger.info(f"πŸ” Testing MCP connection to {config.url}")
            
            async with sse_client(config.url, timeout=AppConfig.MCP_TIMEOUT_SECONDS) as (read_stream, write_stream):
                async with ClientSession(read_stream, write_stream) as session:
                    # Initialize MCP session
                    logger.info("πŸ”§ Initializing MCP session...")
                    await session.initialize()
                    
                    # List available tools
                    logger.info("πŸ“‹ Listing available tools...")
                    tools = await session.list_tools()
                    
                    tool_info = []
                    for tool in tools.tools:
                        tool_info.append(f"  - {tool.name}: {tool.description}")
                        logger.info(f"  πŸ“ Tool: {tool.name}")
                        logger.info(f"    Description: {tool.description}")
                        if hasattr(tool, 'inputSchema') and tool.inputSchema:
                            logger.info(f"    Input Schema: {tool.inputSchema}")
                    
                    if len(tools.tools) == 0:
                        return False, "No tools found on MCP server"
                    
                    message = f"Connected successfully!\nFound {len(tools.tools)} tools:\n" + "\n".join(tool_info)
                    return True, message
                    
        except asyncio.TimeoutError:
            return False, "Connection timeout - server may be sleeping or unreachable"
        except Exception as e:
            logger.error(f"MCP connection failed: {e}")
            logger.error(traceback.format_exc())
            return False, f"Connection failed: {str(e)}"
    
    async def call_llm_with_mcp(self, messages: List[Dict[str, Any]], user_files: List[str]) -> List[Any]:
        """Call LLM with MCP servers - handles both Anthropic and HF providers"""
        if self.current_provider and self.hf_client:
            # Use HuggingFace Inference Provider with custom MCP implementation
            return await self._call_hf_with_custom_mcp(messages, user_files)
        elif self.anthropic_client:
            # Use Anthropic's native MCP support
            return self._call_anthropic_with_native_mcp(messages, user_files)
        else:
            raise ValueError("No LLM backend configured")
    
    def _call_anthropic_with_native_mcp(self, messages: List[Dict[str, Any]], user_files: List[str]) -> List[Any]:
        """Call Anthropic API with native MCP support (existing implementation)"""
        if not self.servers:
            return self._call_claude_without_mcp(messages)
        
        mcp_servers = []
        for server_name, config in self.servers.items():
            mcp_servers.append({
                "type": "url",
                "url": config.url,
                "name": server_name.replace(" ", "_").lower()
            })
        
        # Enhanced system prompt with multimodal and MCP instructions
        system_prompt = self._get_anthropic_mcp_system_prompt(user_files)
        
        # Debug logging
        logger.info(f"πŸ“€ Sending {len(messages)} messages to Claude API")
        logger.info(f"πŸ”§ Using {len(mcp_servers)} MCP servers")
        
        start_time = time.time()
        
        # Call Claude with MCP connector using the correct beta API
        response = self.anthropic_client.beta.messages.create(
            model=AppConfig.CLAUDE_MODEL,
            max_tokens=AppConfig.MAX_TOKENS,
            system=system_prompt,
            messages=messages,
            mcp_servers=mcp_servers,
            betas=[AppConfig.MCP_BETA_VERSION]
        )
        
        return self._process_mcp_response(response, start_time)
    
    async def _call_hf_with_custom_mcp(self, messages: List[Dict[str, Any]], user_files: List[str]) -> List[Any]:
        """Call HuggingFace Inference Provider with custom MCP implementation"""
        from gradio import ChatMessage
        import time
        
        # Get available tools from MCP servers
        available_tools = await self._get_mcp_tools()
        
        if not available_tools:
            # No MCP tools available, use regular chat completion
            return await self._call_hf_without_mcp(messages)
        
        # Enhanced system prompt for HF providers with MCP
        system_prompt = self._get_hf_mcp_system_prompt(user_files, available_tools)
        
        # Add system message if not present
        if not messages or messages[0].get("role") != "system":
            messages.insert(0, {"role": "system", "content": system_prompt})
        else:
            messages[0]["content"] = system_prompt
        
        chat_messages = []
        max_iterations = 5  # Prevent infinite loops
        iteration = 0
        
        while iteration < max_iterations:
            iteration += 1
            logger.info(f"πŸ”„ HF+MCP Iteration {iteration}")
            
            # Call HuggingFace model
            try:
                completion = self.hf_client.chat.completions.create(
                    model=self.current_model,
                    messages=messages,
                    max_tokens=AppConfig.MAX_TOKENS,
                    temperature=0.7
                )
                
                response_content = completion.choices[0].message.content
                logger.info(f"πŸ“ HF Response: {response_content[:200]}...")
                
                # Check if model wants to use tools
                tool_calls = self._extract_tool_calls_from_response(response_content)
                
                if not tool_calls:
                    # No tool calls, return final response
                    chat_messages.append(ChatMessage(
                        role="assistant",
                        content=response_content
                    ))
                    break
                
                # Execute tool calls
                for tool_call in tool_calls:
                    tool_name = tool_call.get("name")
                    tool_args = tool_call.get("arguments", {})
                    
                    # Add thinking message for tool usage
                    chat_messages.append(ChatMessage(
                        role="assistant",
                        content="",
                        metadata={
                            "title": f"πŸ”§ Using {tool_name}",
                            "id": f"tool_{iteration}",
                            "status": "pending",
                            "log": f"Calling MCP tool: {tool_name}"
                        }
                    ))
                    
                    # Execute tool via MCP
                    tool_result = await self._execute_mcp_tool(tool_name, tool_args)
                    
                    # Update tool status
                    for msg in chat_messages:
                        if (msg.metadata and 
                            msg.metadata.get("id") == f"tool_{iteration}" and 
                            msg.metadata.get("status") == "pending"):
                            msg.metadata["status"] = "done"
                            break
                    
                    # Add tool result
                    chat_messages.append(ChatMessage(
                        role="assistant",
                        content=tool_result,
                        metadata={
                            "title": "πŸ“‹ Tool Result",
                            "parent_id": f"tool_{iteration}",
                            "status": "done"
                        }
                    ))
                    
                    # Add tool result to conversation context
                    messages.append({
                        "role": "assistant", 
                        "content": f"I used the tool {tool_name} and got this result: {tool_result}"
                    })
                    
                    # Check for media in tool result
                    media_url = self._extract_media_from_tool_result(tool_result)
                    if media_url:
                        chat_messages.append(ChatMessage(
                            role="assistant",
                            content={"path": media_url}
                        ))
                
                # Continue conversation with tool results
                messages.append({
                    "role": "user",
                    "content": "Please provide a summary of the results and help with the user's original request."
                })
                
            except Exception as e:
                logger.error(f"Error in HF+MCP iteration {iteration}: {e}")
                chat_messages.append(ChatMessage(
                    role="assistant",
                    content=f"❌ Error during tool execution: {str(e)}"
                ))
                break
        
        if not chat_messages:
            chat_messages.append(ChatMessage(
                role="assistant",
                content="I understand your request and I'm here to help."
            ))
        
        return chat_messages
    
    async def _get_mcp_tools(self) -> List[Dict[str, Any]]:
        """Get available tools from all MCP servers"""
        tools = []
        for server_name, config in self.servers.items():
            try:
                async with sse_client(config.url, timeout=AppConfig.MCP_TIMEOUT_SECONDS) as (read_stream, write_stream):
                    async with ClientSession(read_stream, write_stream) as session:
                        await session.initialize()
                        server_tools = await session.list_tools()
                        
                        for tool in server_tools.tools:
                            tools.append({
                                "name": tool.name,
                                "description": tool.description,
                                "server": server_name,
                                "schema": tool.inputSchema if hasattr(tool, 'inputSchema') else {}
                            })
                            
            except Exception as e:
                logger.error(f"Failed to get tools from {server_name}: {e}")
        
        return tools
    
    def _extract_tool_calls_from_response(self, response: str) -> List[Dict[str, Any]]:
        """Extract tool calls from LLM response text"""
        # Look for tool call patterns in the response
        # This is a simple implementation - you might want to make this more robust
        import re
        
        tool_calls = []
        
        # Pattern to match tool calls like: CALL_TOOL: tool_name(arg1="value1", arg2="value2")
        pattern = r'CALL_TOOL:\s*(\w+)\((.*?)\)'
        matches = re.findall(pattern, response)
        
        for match in matches:
            tool_name = match[0]
            args_str = match[1]
            
            # Simple argument parsing (you might want to improve this)
            args = {}
            if args_str:
                arg_pairs = args_str.split(',')
                for pair in arg_pairs:
                    if '=' in pair:
                        key, value = pair.split('=', 1)
                        key = key.strip().strip('"').strip("'")
                        value = value.strip().strip('"').strip("'")
                        args[key] = value
            
            tool_calls.append({
                "name": tool_name,
                "arguments": args
            })
        
        return tool_calls
    
    async def _execute_mcp_tool(self, tool_name: str, arguments: Dict[str, Any]) -> str:
        """Execute a tool via MCP servers"""
        for server_name, config in self.servers.items():
            try:
                async with sse_client(config.url, timeout=AppConfig.MCP_TIMEOUT_SECONDS) as (read_stream, write_stream):
                    async with ClientSession(read_stream, write_stream) as session:
                        await session.initialize()
                        
                        # Check if this server has the tool
                        tools = await session.list_tools()
                        tool_found = False
                        for tool in tools.tools:
                            if tool.name == tool_name:
                                tool_found = True
                                break
                        
                        if not tool_found:
                            continue
                        
                        # Call the tool
                        result = await session.call_tool(tool_name, arguments)
                        
                        if result.content:
                            return result.content[0].text if hasattr(result.content[0], 'text') else str(result.content[0])
                        else:
                            return "Tool executed successfully but returned no content"
                            
            except Exception as e:
                logger.error(f"Failed to execute tool {tool_name} on {server_name}: {e}")
        
        return f"❌ Failed to execute tool: {tool_name}"
    
    def _extract_media_from_tool_result(self, result: str) -> Optional[str]:
        """Extract media URL from tool result"""
        # Use existing media extraction logic
        if not self.servers:
            return None
        
        # Use the first server's config for media extraction
        config = next(iter(self.servers.values()))
        return self._extract_media_from_mcp_response(result, config)
    
    async def _call_hf_without_mcp(self, messages: List[Dict[str, Any]]) -> List[Any]:
        """Call HuggingFace provider without MCP"""
        from gradio import ChatMessage
        
        try:
            completion = self.hf_client.chat.completions.create(
                model=self.current_model,
                messages=messages,
                max_tokens=AppConfig.MAX_TOKENS,
                temperature=0.7
            )
            
            response_content = completion.choices[0].message.content
            
            return [ChatMessage(role="assistant", content=response_content)]
            
        except Exception as e:
            logger.error(f"HF inference error: {e}")
            return [ChatMessage(role="assistant", content=f"❌ Error: {str(e)}")]
    
    def _call_claude_without_mcp(self, messages: List[Dict[str, Any]]) -> List[Any]:
        """Call Claude API without MCP servers (existing implementation)"""
        from gradio import ChatMessage
        import time
        
        logger.info("πŸ’¬ No MCP servers available, using regular Claude chat")
        
        system_prompt = self._get_native_system_prompt()
        
        # Use regular messages API
        response = self.anthropic_client.messages.create(
            model=AppConfig.CLAUDE_MODEL,
            max_tokens=AppConfig.MAX_TOKENS,
            system=system_prompt,
            messages=messages
        )
        
        response_text = ""
        for content in response.content:
            if content.type == "text":
                response_text += content.text
        
        if not response_text:
            response_text = "I understand your request and I'm here to help."
        
        return [ChatMessage(role="assistant", content=response_text)]
    
    def _get_native_system_prompt(self) -> str:
        """Get system prompt for Claude without MCP servers"""
        from datetime import datetime
        
        return f"""You are Claude Sonnet 4, a helpful AI assistant with native multimodal capabilities. You can have conversations, answer questions, help with various tasks, and provide information on a wide range of topics.

YOUR NATIVE CAPABILITIES (Available right now):
- **Image Understanding**: You can directly see and describe images, analyze their content, read text in images, identify objects, people, scenes, etc.
- **Text Processing**: You can analyze, summarize, translate, and process text directly
- **General Knowledge**: You can answer questions, explain concepts, and have conversations
- **Code Analysis**: You can read, analyze, and explain code

Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}

IMPORTANT: You DO NOT need MCP servers for:
- Describing or analyzing uploaded images
- Reading text in images
- Identifying objects, people, or scenes in images
- General conversation and knowledge questions

You DO need MCP servers for:
- Creating new images, audio, or video
- Editing or transforming existing media files
- Transcribing audio files
- Processing non-image files (audio, video, documents)

If users upload images and ask you to describe or analyze them, use your native vision capabilities immediately. Only mention MCP servers if they ask for creation or editing tasks."""
    
    def _get_anthropic_mcp_system_prompt(self, user_files: List[str]) -> str:
        """Get system prompt for Claude with MCP servers (existing implementation)"""
        from datetime import datetime
        
        uploaded_files_context = ""
        if user_files:
            uploaded_files_context = f"\n\nFILES UPLOADED BY USER:\n"
            for i, file_path in enumerate(user_files, 1):
                file_name = file_path.split('/')[-1] if '/' in file_path else file_path
                if AppConfig.is_image_file(file_path):
                    file_type = "Image"
                elif AppConfig.is_audio_file(file_path):
                    file_type = "Audio"
                elif AppConfig.is_video_file(file_path):
                    file_type = "Video"
                else:
                    file_type = "File"
                uploaded_files_context += f"{i}. {file_type}: {file_name} (path: {file_path})\n"
        
        return f"""You are Claude Sonnet 4, a helpful AI assistant with both native multimodal capabilities and access to various MCP tools.

YOUR NATIVE CAPABILITIES (No MCP tools needed):
- **Image Understanding**: You can directly see and describe images, analyze their content, read text in images, etc.
- **Text Processing**: You can analyze, summarize, translate, and process text directly
- **General Knowledge**: You can answer questions, explain concepts, and have conversations
- **Code Analysis**: You can read, analyze, and explain code

WHEN TO USE MCP TOOLS:
- **Image Generation**: Creating new images from text prompts
- **Image Editing**: Modifying, enhancing, or transforming existing images  
- **Audio Processing**: Transcribing audio, generating speech, audio enhancement
- **Video Processing**: Creating or editing videos
- **Specialized Analysis**: Tasks requiring specific models or APIs

UPLOADED FILES HANDLING:
{uploaded_files_context}

IMPORTANT - For uploaded images:
- **Image Description/Analysis**: Use your NATIVE vision capabilities - you can see and describe images directly
- **Image Editing/Enhancement**: Use MCP image processing tools
- **Image Generation**: Use MCP image generation tools

IMPORTANT - GRADIO MEDIA DISPLAY:
When MCP tools return media, end your response with "MEDIA_GENERATED: [URL]" where [URL] is the actual media URL.

Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
Available MCP servers: {list(self.servers.keys())}"""
    
    def _get_hf_mcp_system_prompt(self, user_files: List[str], available_tools: List[Dict[str, Any]]) -> str:
        """Get system prompt for HuggingFace providers with MCP"""
        from datetime import datetime
        
        uploaded_files_context = ""
        if user_files:
            uploaded_files_context = f"\n\nFILES UPLOADED BY USER:\n"
            for i, file_path in enumerate(user_files, 1):
                file_name = file_path.split('/')[-1] if '/' in file_path else file_path
                if AppConfig.is_image_file(file_path):
                    file_type = "Image"
                elif AppConfig.is_audio_file(file_path):
                    file_type = "Audio"
                elif AppConfig.is_video_file(file_path):
                    file_type = "Video"
                else:
                    file_type = "File"
                uploaded_files_context += f"{i}. {file_type}: {file_name} (path: {file_path})\n"
        
        tools_context = ""
        if available_tools:
            tools_context = f"\n\nAVAILABLE MCP TOOLS:\n"
            for tool in available_tools:
                tools_context += f"- {tool['name']}: {tool['description']} (server: {tool['server']})\n"
            
            tools_context += f"\nTo use a tool, respond with: CALL_TOOL: tool_name(arg1=\"value1\", arg2=\"value2\")\n"
        
        return f"""You are an AI assistant using {self.current_provider} inference with {self.current_model}. You have access to external tools via MCP (Model Context Protocol).

YOUR CAPABILITIES:
- **Text Processing**: You can analyze, summarize, translate, and process text directly
- **General Knowledge**: You can answer questions, explain concepts, and have conversations  
- **Code Analysis**: You can read, analyze, and explain code
- **Tool Usage**: You can call external tools to extend your capabilities

UPLOADED FILES HANDLING:
{uploaded_files_context}

{tools_context}

IMPORTANT INSTRUCTIONS:
- For complex tasks requiring specialized capabilities, use the available MCP tools
- When you need to use a tool, clearly indicate it with the CALL_TOOL format
- After using tools, provide a clear summary of the results to the user
- If a tool returns media (images, audio, video), describe what was generated/processed

Current time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
Current LLM: {self.current_provider}/{self.current_model}
Available MCP servers: {list(self.servers.keys())}"""
    
    # Include existing helper methods from original implementation
    def _extract_media_from_mcp_response(self, result_text: str, config: MCPServerConfig) -> Optional[str]:
        """Enhanced media extraction from MCP responses (existing implementation)"""
        if not isinstance(result_text, str):
            logger.info(f"πŸ” Non-string result: {type(result_text)}")
            return None
        
        base_url = config.url.replace("/gradio_api/mcp/sse", "")
        logger.info(f"πŸ” Processing MCP result for media: {result_text[:300]}...")
        logger.info(f"πŸ” Base URL: {base_url}")
        
        # 1. Try to parse as JSON (most Gradio MCP servers return structured data)
        try:
            if result_text.strip().startswith('[') or result_text.strip().startswith('{'):
                logger.info("πŸ” Attempting JSON parse...")
                data = json.loads(result_text.strip())
                logger.info(f"πŸ” Parsed JSON structure: {data}")
                
                # Handle array format: [{'image': {'url': '...'}}] or [{'url': '...'}]
                if isinstance(data, list) and len(data) > 0:
                    item = data[0]
                    logger.info(f"πŸ” First array item: {item}")
                    
                    if isinstance(item, dict):
                        # Check for nested media structure
                        for media_type in ['image', 'audio', 'video']:
                            if media_type in item and isinstance(item[media_type], dict):
                                media_data = item[media_type]
                                if 'url' in media_data:
                                    url = media_data['url']
                                    logger.info(f"🎯 Found {media_type} URL: {url}")
                                    return self._resolve_media_url(url, base_url)
                        
                        # Check for direct URL
                        if 'url' in item:
                            url = item['url']
                            logger.info(f"🎯 Found direct URL: {url}")
                            return self._resolve_media_url(url, base_url)
                
                # Handle object format: {'image': {'url': '...'}} or {'url': '...'}
                elif isinstance(data, dict):
                    logger.info(f"πŸ” Processing dict: {data}")
                    
                    # Check for nested media structure
                    for media_type in ['image', 'audio', 'video']:
                        if media_type in data and isinstance(data[media_type], dict):
                            media_data = data[media_type]
                            if 'url' in media_data:
                                url = media_data['url']
                                logger.info(f"🎯 Found {media_type} URL: {url}")
                                return self._resolve_media_url(url, base_url)
                    
                    # Check for direct URL
                    if 'url' in data:
                        url = data['url']
                        logger.info(f"🎯 Found direct URL: {url}")
                        return self._resolve_media_url(url, base_url)
                
        except json.JSONDecodeError:
            logger.info("πŸ” Not valid JSON, trying other formats...")
        except Exception as e:
            logger.warning(f"πŸ” JSON parsing error: {e}")
        
        # 2. Check for data URLs (base64 encoded media)
        if result_text.startswith('data:'):
            logger.info("🎯 Found data URL")
            return result_text
        
        # 3. Check for base64 image patterns
        if any(result_text.startswith(pattern) for pattern in ['iVBORw0KGgoAAAANSUhEU', '/9j/', 'UklGR']):
            logger.info("🎯 Found base64 image data")
            return f"data:image/png;base64,{result_text}"
        
        # 4. Check for file paths and convert to URLs
        if AppConfig.is_media_file(result_text):
            # Extract just the filename if it's a path
            if '/' in result_text:
                filename = result_text.split('/')[-1]
            else:
                filename = result_text.strip()
            
            # Create Gradio file URL
            if filename.startswith('http'):
                media_url = filename
            else:
                media_url = f"{base_url}/file={filename}"
            
            logger.info(f"🎯 Found media file: {media_url}")
            return media_url
        
        # 5. Check for HTTP URLs that look like media
        if result_text.startswith('http') and AppConfig.is_media_file(result_text):
            logger.info(f"🎯 Found HTTP media URL: {result_text}")
            return result_text
        
        logger.info("❌ No media detected in result")
        return None
    
    def _resolve_media_url(self, url: str, base_url: str) -> str:
        """Resolve relative URLs to absolute URLs"""
        if url.startswith('http') or url.startswith('data:'):
            return url
        elif url.startswith('/'):
            return f"{base_url}/file={url}"
        else:
            return f"{base_url}/file={url}"
    
    def _process_mcp_response(self, response, start_time: float) -> List[Any]:
        """Process Claude's response with MCP tool calls into structured ChatMessage objects (existing implementation)"""
        from gradio import ChatMessage
        import time
        
        chat_messages = []
        current_tool_id = None
        current_server_name = None
        tool_start_time = None
        text_segments = []  # Collect text segments separately
        
        # Process Claude's response
        for content in response.content:
            if content.type == "text":
                # Collect text segments but don't combine them yet
                text_content = content.text
                # Check if Claude indicated media was generated
                if "MEDIA_GENERATED:" in text_content:
                    media_match = re.search(r"MEDIA_GENERATED:\s*([^\s]+)", text_content)
                    if media_match:
                        media_url = media_match.group(1)
                        # Clean up the response text
                        text_content = re.sub(r"MEDIA_GENERATED:\s*[^\s]+", "", text_content).strip()
                        logger.info(f"🎯 Claude indicated media generated: {media_url}")
                        # Add media as separate message
                        chat_messages.append(ChatMessage(
                            role="assistant", 
                            content={"path": media_url}
                        ))
                
                if text_content.strip():
                    text_segments.append(text_content.strip())
            
            elif hasattr(content, 'type') and content.type == "mcp_tool_use":
                # Add any accumulated text before tool use
                if text_segments:
                    combined_text = " ".join(text_segments)
                    if combined_text.strip():
                        chat_messages.append(ChatMessage(
                            role="assistant",
                            content=combined_text.strip()
                        ))
                    text_segments = []  # Reset
                
                tool_name = content.name
                server_name = content.server_name
                current_tool_id = getattr(content, 'id', 'unknown')
                current_server_name = server_name
                tool_start_time = time.time()
                
                logger.info(f"πŸ”§ Claude used MCP tool: {tool_name} on server: {server_name}")
                
                # Create a "thinking" message for tool usage
                chat_messages.append(ChatMessage(
                    role="assistant",
                    content="",
                    metadata={
                        "title": f"πŸ”§ Using {tool_name}",
                        "id": current_tool_id,
                        "status": "pending",
                        "log": f"Server: {server_name}"
                    }
                ))
                
            elif hasattr(content, 'type') and content.type == "mcp_tool_result":
                tool_use_id = getattr(content, 'tool_use_id', 'unknown')
                duration = time.time() - tool_start_time if tool_start_time else None
                
                logger.info(f"πŸ“ Processing MCP tool result (tool_use_id: {tool_use_id})")
                
                # Update the pending tool message to completed
                for msg in chat_messages:
                    if (msg.metadata and 
                        msg.metadata.get("id") == current_tool_id and 
                        msg.metadata.get("status") == "pending"):
                        msg.metadata["status"] = "done"
                        if duration:
                            msg.metadata["duration"] = round(duration, 2)
                        break
                
                media_url = None
                if content.content:
                    result_content = content.content[0]
                    result_text = result_content.text if hasattr(result_content, 'text') else str(result_content)
                    
                    logger.info(f"πŸ“ MCP tool result: {result_text[:200]}...")
                    
                    # Try to extract media URL from the result
                    if current_server_name and current_server_name in self.servers:
                        config = self.servers[current_server_name]
                        extracted_media = self._extract_media_from_mcp_response(result_text, config)
                        if extracted_media:
                            media_url = extracted_media
                            logger.info(f"🎯 Extracted media from MCP result: {media_url}")
                    else:
                        # Fallback: try all servers to find media
                        for server_name, config in self.servers.items():
                            extracted_media = self._extract_media_from_mcp_response(result_text, config)
                            if extracted_media:
                                media_url = extracted_media
                                logger.info(f"🎯 Extracted media from MCP result (fallback): {media_url}")
                                break
                    
                    # Always show the full tool result
                    chat_messages.append(ChatMessage(
                        role="assistant",
                        content=result_text,
                        metadata={
                            "title": "πŸ“‹ Tool Result",
                            "parent_id": current_tool_id,
                            "status": "done"
                        }
                    ))
                    
                    # Only add separate media display if the tool result does NOT contain 
                    # any Gradio file data structures that would be auto-rendered
                    if media_url and not self._contains_gradio_file_structure(result_text):
                        logger.info(f"🎯 Adding separate media display for: {media_url}")
                        chat_messages.append(ChatMessage(
                            role="assistant", 
                            content={"path": media_url}
                        ))
                    else:
                        if media_url:
                            logger.info(f"🚫 Skipping separate media - tool result contains Gradio file structure")
                        else:
                            logger.info(f"🚫 No media URL extracted")
                        
                else:
                    # Add error message for failed tool call
                    chat_messages.append(ChatMessage(
                        role="assistant",
                        content="Tool call failed: No content returned",
                        metadata={
                            "title": "❌ Tool Error",
                            "parent_id": current_tool_id,
                            "status": "done"
                        }
                    ))
        
        # Add any remaining text segments after all processing
        if text_segments:
            combined_text = " ".join(text_segments)
            if combined_text.strip():
                chat_messages.append(ChatMessage(
                    role="assistant",
                    content=combined_text.strip()
                ))
        
        # Fallback if no content was processed
        if not chat_messages:
            chat_messages.append(ChatMessage(
                role="assistant",
                content="I understand your request and I'm here to help."
            ))
        
        return chat_messages
    
    def _contains_gradio_file_structure(self, text: str) -> bool:
        """Check if the text contains ANY Gradio file data structures that would be auto-rendered (existing implementation)"""
        
        # Check for key indicators of Gradio file structures
        gradio_indicators = [
            # Gradio FileData type indicators
            "'_type': 'gradio.FileData'",
            '"_type": "gradio.FileData"',
            'gradio.FileData',
            
            # File structure patterns
            "'path':",
            '"path":',
            "'url':",
            '"url":',
            "'orig_name':",
            '"orig_name":',
            "'mime_type':",
            '"mime_type":',
            'is_stream',
            'meta_type',
            
            # Common file result patterns
            "{'image':",
            '{"image":',
            "{'audio':",
            '{"audio":',
            "{'video':",
            '{"video":',
            "{'file':",
            '{"file":',
            
            # List patterns that typically contain file objects
            "[{'image'",
            '[{"image"',
            "[{'audio'",
            '[{"audio"',
            "[{'video'",
            '[{"video"',
            "[{'file'",
            '[{"file"'
        ]
        
        # If we find multiple indicators, it's likely a Gradio file structure
        indicator_count = sum(1 for indicator in gradio_indicators if indicator in text)
        
        # Also check for simple URL patterns (for audio case)
        is_simple_url = (text.strip().startswith('http') and 
                        len(text.strip().split()) == 1 and 
                        any(ext in text.lower() for ext in ['.wav', '.mp3', '.mp4', '.png', '.jpg', '.jpeg', '.gif', '.svg', '.webm', '.ogg']))
        
        result = indicator_count >= 2 or is_simple_url
        logger.debug(f"πŸ“‹ File structure check: {indicator_count} indicators, simple_url: {is_simple_url}, result: {result}")
        
        return result
    
    def get_server_status(self) -> Dict[str, str]:
        """Get status of all configured servers"""
        status = {}
        for name in self.servers:
            compatibility = self._check_file_upload_compatibility(self.servers[name])
            status[name] = f"βœ… Connected (MCP Protocol) - {compatibility}"
        return status
    
    def _check_file_upload_compatibility(self, config: MCPServerConfig) -> str:
        """Check if a server likely supports file uploads"""
        if "hf.space" in config.url:
            return "🟑 Hugging Face Space (usually compatible)"
        elif "gradio" in config.url.lower():
            return "🟒 Gradio server (likely compatible)"
        elif "localhost" in config.url or "127.0.0.1" in config.url:
            return "🟒 Local server (file access available)"
        else:
            return "πŸ”΄ Remote server (may need public URLs)"