Spaces:
Configuration error
Configuration error
upload updated files
Browse files- lora_diffusion/cli_lora_add.py +85 -16
- lora_diffusion/lora.py +198 -9
- lora_diffusion/to_ckpt_v2.py +232 -0
lora_diffusion/cli_lora_add.py
CHANGED
|
@@ -1,35 +1,73 @@
|
|
| 1 |
from typing import Literal, Union, Dict
|
| 2 |
-
|
|
|
|
| 3 |
import fire
|
| 4 |
from diffusers import StableDiffusionPipeline
|
| 5 |
|
| 6 |
import torch
|
| 7 |
from .lora import tune_lora_scale, weight_apply_lora
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def add(
|
| 11 |
path_1: str,
|
| 12 |
path_2: str,
|
| 13 |
-
output_path: str
|
| 14 |
alpha: float = 0.5,
|
| 15 |
-
mode: Literal[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
):
|
|
|
|
| 17 |
if mode == "lpl":
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
elif mode == "upl":
|
| 35 |
|
|
@@ -38,12 +76,43 @@ def add(
|
|
| 38 |
).to("cpu")
|
| 39 |
|
| 40 |
weight_apply_lora(loaded_pipeline.unet, torch.load(path_2), alpha=alpha)
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
loaded_pipeline.save_pretrained(output_path)
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
def main():
|
| 49 |
fire.Fire(add)
|
|
|
|
| 1 |
from typing import Literal, Union, Dict
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
import fire
|
| 5 |
from diffusers import StableDiffusionPipeline
|
| 6 |
|
| 7 |
import torch
|
| 8 |
from .lora import tune_lora_scale, weight_apply_lora
|
| 9 |
+
from .to_ckpt_v2 import convert_to_ckpt
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def _text_lora_path(path: str) -> str:
|
| 13 |
+
assert path.endswith(".pt"), "Only .pt files are supported"
|
| 14 |
+
return ".".join(path.split(".")[:-1] + ["text_encoder", "pt"])
|
| 15 |
|
| 16 |
|
| 17 |
def add(
|
| 18 |
path_1: str,
|
| 19 |
path_2: str,
|
| 20 |
+
output_path: str,
|
| 21 |
alpha: float = 0.5,
|
| 22 |
+
mode: Literal[
|
| 23 |
+
"lpl",
|
| 24 |
+
"upl",
|
| 25 |
+
"upl-ckpt-v2",
|
| 26 |
+
] = "lpl",
|
| 27 |
+
with_text_lora: bool = False,
|
| 28 |
):
|
| 29 |
+
print("Lora Add, mode " + mode)
|
| 30 |
if mode == "lpl":
|
| 31 |
+
for _path_1, _path_2, opt in [(path_1, path_2, "unet")] + (
|
| 32 |
+
[(_text_lora_path(path_1), _text_lora_path(path_2), "text_encoder")]
|
| 33 |
+
if with_text_lora
|
| 34 |
+
else []
|
| 35 |
+
):
|
| 36 |
+
print("Loading", _path_1, _path_2)
|
| 37 |
+
out_list = []
|
| 38 |
+
if opt == "text_encoder":
|
| 39 |
+
if not os.path.exists(_path_1):
|
| 40 |
+
print(f"No text encoder found in {_path_1}, skipping...")
|
| 41 |
+
continue
|
| 42 |
+
if not os.path.exists(_path_2):
|
| 43 |
+
print(f"No text encoder found in {_path_1}, skipping...")
|
| 44 |
+
continue
|
| 45 |
+
|
| 46 |
+
l1 = torch.load(_path_1)
|
| 47 |
+
l2 = torch.load(_path_2)
|
| 48 |
|
| 49 |
+
l1pairs = zip(l1[::2], l1[1::2])
|
| 50 |
+
l2pairs = zip(l2[::2], l2[1::2])
|
| 51 |
|
| 52 |
+
for (x1, y1), (x2, y2) in zip(l1pairs, l2pairs):
|
| 53 |
+
# print("Merging", x1.shape, y1.shape, x2.shape, y2.shape)
|
| 54 |
+
x1.data = alpha * x1.data + (1 - alpha) * x2.data
|
| 55 |
+
y1.data = alpha * y1.data + (1 - alpha) * y2.data
|
| 56 |
|
| 57 |
+
out_list.append(x1)
|
| 58 |
+
out_list.append(y1)
|
| 59 |
|
| 60 |
+
if opt == "unet":
|
| 61 |
+
|
| 62 |
+
print("Saving merged UNET to", output_path)
|
| 63 |
+
torch.save(out_list, output_path)
|
| 64 |
+
|
| 65 |
+
elif opt == "text_encoder":
|
| 66 |
+
print("Saving merged text encoder to", _text_lora_path(output_path))
|
| 67 |
+
torch.save(
|
| 68 |
+
out_list,
|
| 69 |
+
_text_lora_path(output_path),
|
| 70 |
+
)
|
| 71 |
|
| 72 |
elif mode == "upl":
|
| 73 |
|
|
|
|
| 76 |
).to("cpu")
|
| 77 |
|
| 78 |
weight_apply_lora(loaded_pipeline.unet, torch.load(path_2), alpha=alpha)
|
| 79 |
+
if with_text_lora:
|
| 80 |
|
| 81 |
+
weight_apply_lora(
|
| 82 |
+
loaded_pipeline.text_encoder,
|
| 83 |
+
torch.load(_text_lora_path(path_2)),
|
| 84 |
+
alpha=alpha,
|
| 85 |
+
target_replace_module=["CLIPAttention"],
|
| 86 |
+
)
|
| 87 |
|
| 88 |
loaded_pipeline.save_pretrained(output_path)
|
| 89 |
|
| 90 |
+
elif mode == "upl-ckpt-v2":
|
| 91 |
+
|
| 92 |
+
loaded_pipeline = StableDiffusionPipeline.from_pretrained(
|
| 93 |
+
path_1,
|
| 94 |
+
).to("cpu")
|
| 95 |
+
|
| 96 |
+
weight_apply_lora(loaded_pipeline.unet, torch.load(path_2), alpha=alpha)
|
| 97 |
+
if with_text_lora:
|
| 98 |
+
weight_apply_lora(
|
| 99 |
+
loaded_pipeline.text_encoder,
|
| 100 |
+
torch.load(_text_lora_path(path_2)),
|
| 101 |
+
alpha=alpha,
|
| 102 |
+
target_replace_module=["CLIPAttention"],
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
_tmp_output = output_path + ".tmp"
|
| 106 |
+
|
| 107 |
+
loaded_pipeline.save_pretrained(_tmp_output)
|
| 108 |
+
convert_to_ckpt(_tmp_output, output_path, as_half=True)
|
| 109 |
+
# remove the tmp_output folder
|
| 110 |
+
shutil.rmtree(_tmp_output)
|
| 111 |
+
|
| 112 |
+
else:
|
| 113 |
+
print("Unknown mode", mode)
|
| 114 |
+
raise ValueError(f"Unknown mode {mode}")
|
| 115 |
+
|
| 116 |
|
| 117 |
def main():
|
| 118 |
fire.Fire(add)
|
lora_diffusion/lora.py
CHANGED
|
@@ -10,14 +10,20 @@ import torch.nn as nn
|
|
| 10 |
|
| 11 |
|
| 12 |
class LoraInjectedLinear(nn.Module):
|
| 13 |
-
def __init__(self, in_features, out_features, bias=False):
|
| 14 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
self.linear = nn.Linear(in_features, out_features, bias)
|
| 16 |
-
self.lora_down = nn.Linear(in_features,
|
| 17 |
-
self.lora_up = nn.Linear(
|
| 18 |
self.scale = 1.0
|
| 19 |
|
| 20 |
-
nn.init.normal_(self.lora_down.weight, std=1 /
|
| 21 |
nn.init.zeros_(self.lora_up.weight)
|
| 22 |
|
| 23 |
def forward(self, input):
|
|
@@ -25,7 +31,10 @@ class LoraInjectedLinear(nn.Module):
|
|
| 25 |
|
| 26 |
|
| 27 |
def inject_trainable_lora(
|
| 28 |
-
model: nn.Module,
|
|
|
|
|
|
|
|
|
|
| 29 |
):
|
| 30 |
"""
|
| 31 |
inject lora into model, and returns lora parameter groups.
|
|
@@ -34,6 +43,9 @@ def inject_trainable_lora(
|
|
| 34 |
require_grad_params = []
|
| 35 |
names = []
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
for _module in model.modules():
|
| 38 |
if _module.__class__.__name__ in target_replace_module:
|
| 39 |
|
|
@@ -46,6 +58,7 @@ def inject_trainable_lora(
|
|
| 46 |
_child_module.in_features,
|
| 47 |
_child_module.out_features,
|
| 48 |
_child_module.bias is not None,
|
|
|
|
| 49 |
)
|
| 50 |
_tmp.linear.weight = weight
|
| 51 |
if bias is not None:
|
|
@@ -61,10 +74,13 @@ def inject_trainable_lora(
|
|
| 61 |
_module._modules[name].lora_down.parameters()
|
| 62 |
)
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
_module._modules[name].lora_up.weight.requires_grad = True
|
| 65 |
_module._modules[name].lora_down.weight.requires_grad = True
|
| 66 |
names.append(name)
|
| 67 |
-
|
| 68 |
return require_grad_params, names
|
| 69 |
|
| 70 |
|
|
@@ -82,9 +98,13 @@ def extract_lora_ups_down(model, target_replace_module=["CrossAttention", "Atten
|
|
| 82 |
return loras
|
| 83 |
|
| 84 |
|
| 85 |
-
def save_lora_weight(
|
|
|
|
|
|
|
| 86 |
weights = []
|
| 87 |
-
for _up, _down in extract_lora_ups_down(
|
|
|
|
|
|
|
| 88 |
weights.append(_up.weight)
|
| 89 |
weights.append(_down.weight)
|
| 90 |
|
|
@@ -125,7 +145,7 @@ def weight_apply_lora(
|
|
| 125 |
|
| 126 |
|
| 127 |
def monkeypatch_lora(
|
| 128 |
-
model, loras, target_replace_module=["CrossAttention", "Attention"]
|
| 129 |
):
|
| 130 |
for _module in model.modules():
|
| 131 |
if _module.__class__.__name__ in target_replace_module:
|
|
@@ -138,6 +158,44 @@ def monkeypatch_lora(
|
|
| 138 |
_child_module.in_features,
|
| 139 |
_child_module.out_features,
|
| 140 |
_child_module.bias is not None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
)
|
| 142 |
_tmp.linear.weight = weight
|
| 143 |
|
|
@@ -160,7 +218,138 @@ def monkeypatch_lora(
|
|
| 160 |
_module._modules[name].to(weight.device)
|
| 161 |
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
def tune_lora_scale(model, alpha: float = 1.0):
|
| 164 |
for _module in model.modules():
|
| 165 |
if _module.__class__.__name__ == "LoraInjectedLinear":
|
| 166 |
_module.scale = alpha
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
class LoraInjectedLinear(nn.Module):
|
| 13 |
+
def __init__(self, in_features, out_features, bias=False, r=4):
|
| 14 |
super().__init__()
|
| 15 |
+
|
| 16 |
+
if r > min(in_features, out_features):
|
| 17 |
+
raise ValueError(
|
| 18 |
+
f"LoRA rank {r} must be less or equal than {min(in_features, out_features)}"
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
self.linear = nn.Linear(in_features, out_features, bias)
|
| 22 |
+
self.lora_down = nn.Linear(in_features, r, bias=False)
|
| 23 |
+
self.lora_up = nn.Linear(r, out_features, bias=False)
|
| 24 |
self.scale = 1.0
|
| 25 |
|
| 26 |
+
nn.init.normal_(self.lora_down.weight, std=1 / r**2)
|
| 27 |
nn.init.zeros_(self.lora_up.weight)
|
| 28 |
|
| 29 |
def forward(self, input):
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
def inject_trainable_lora(
|
| 34 |
+
model: nn.Module,
|
| 35 |
+
target_replace_module: List[str] = ["CrossAttention", "Attention"],
|
| 36 |
+
r: int = 4,
|
| 37 |
+
loras=None, # path to lora .pt
|
| 38 |
):
|
| 39 |
"""
|
| 40 |
inject lora into model, and returns lora parameter groups.
|
|
|
|
| 43 |
require_grad_params = []
|
| 44 |
names = []
|
| 45 |
|
| 46 |
+
if loras != None:
|
| 47 |
+
loras = torch.load(loras)
|
| 48 |
+
|
| 49 |
for _module in model.modules():
|
| 50 |
if _module.__class__.__name__ in target_replace_module:
|
| 51 |
|
|
|
|
| 58 |
_child_module.in_features,
|
| 59 |
_child_module.out_features,
|
| 60 |
_child_module.bias is not None,
|
| 61 |
+
r,
|
| 62 |
)
|
| 63 |
_tmp.linear.weight = weight
|
| 64 |
if bias is not None:
|
|
|
|
| 74 |
_module._modules[name].lora_down.parameters()
|
| 75 |
)
|
| 76 |
|
| 77 |
+
if loras != None:
|
| 78 |
+
_module._modules[name].lora_up.weight = loras.pop(0)
|
| 79 |
+
_module._modules[name].lora_down.weight = loras.pop(0)
|
| 80 |
+
|
| 81 |
_module._modules[name].lora_up.weight.requires_grad = True
|
| 82 |
_module._modules[name].lora_down.weight.requires_grad = True
|
| 83 |
names.append(name)
|
|
|
|
| 84 |
return require_grad_params, names
|
| 85 |
|
| 86 |
|
|
|
|
| 98 |
return loras
|
| 99 |
|
| 100 |
|
| 101 |
+
def save_lora_weight(
|
| 102 |
+
model, path="./lora.pt", target_replace_module=["CrossAttention", "Attention"]
|
| 103 |
+
):
|
| 104 |
weights = []
|
| 105 |
+
for _up, _down in extract_lora_ups_down(
|
| 106 |
+
model, target_replace_module=target_replace_module
|
| 107 |
+
):
|
| 108 |
weights.append(_up.weight)
|
| 109 |
weights.append(_down.weight)
|
| 110 |
|
|
|
|
| 145 |
|
| 146 |
|
| 147 |
def monkeypatch_lora(
|
| 148 |
+
model, loras, target_replace_module=["CrossAttention", "Attention"], r: int = 4
|
| 149 |
):
|
| 150 |
for _module in model.modules():
|
| 151 |
if _module.__class__.__name__ in target_replace_module:
|
|
|
|
| 158 |
_child_module.in_features,
|
| 159 |
_child_module.out_features,
|
| 160 |
_child_module.bias is not None,
|
| 161 |
+
r=r,
|
| 162 |
+
)
|
| 163 |
+
_tmp.linear.weight = weight
|
| 164 |
+
|
| 165 |
+
if bias is not None:
|
| 166 |
+
_tmp.linear.bias = bias
|
| 167 |
+
|
| 168 |
+
# switch the module
|
| 169 |
+
_module._modules[name] = _tmp
|
| 170 |
+
|
| 171 |
+
up_weight = loras.pop(0)
|
| 172 |
+
down_weight = loras.pop(0)
|
| 173 |
+
|
| 174 |
+
_module._modules[name].lora_up.weight = nn.Parameter(
|
| 175 |
+
up_weight.type(weight.dtype)
|
| 176 |
+
)
|
| 177 |
+
_module._modules[name].lora_down.weight = nn.Parameter(
|
| 178 |
+
down_weight.type(weight.dtype)
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
_module._modules[name].to(weight.device)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def monkeypatch_replace_lora(
|
| 185 |
+
model, loras, target_replace_module=["CrossAttention", "Attention"], r: int = 4
|
| 186 |
+
):
|
| 187 |
+
for _module in model.modules():
|
| 188 |
+
if _module.__class__.__name__ in target_replace_module:
|
| 189 |
+
for name, _child_module in _module.named_modules():
|
| 190 |
+
if _child_module.__class__.__name__ == "LoraInjectedLinear":
|
| 191 |
+
|
| 192 |
+
weight = _child_module.linear.weight
|
| 193 |
+
bias = _child_module.linear.bias
|
| 194 |
+
_tmp = LoraInjectedLinear(
|
| 195 |
+
_child_module.linear.in_features,
|
| 196 |
+
_child_module.linear.out_features,
|
| 197 |
+
_child_module.linear.bias is not None,
|
| 198 |
+
r=r,
|
| 199 |
)
|
| 200 |
_tmp.linear.weight = weight
|
| 201 |
|
|
|
|
| 218 |
_module._modules[name].to(weight.device)
|
| 219 |
|
| 220 |
|
| 221 |
+
def monkeypatch_add_lora(
|
| 222 |
+
model,
|
| 223 |
+
loras,
|
| 224 |
+
target_replace_module=["CrossAttention", "Attention"],
|
| 225 |
+
alpha: float = 1.0,
|
| 226 |
+
beta: float = 1.0,
|
| 227 |
+
):
|
| 228 |
+
for _module in model.modules():
|
| 229 |
+
if _module.__class__.__name__ in target_replace_module:
|
| 230 |
+
for name, _child_module in _module.named_modules():
|
| 231 |
+
if _child_module.__class__.__name__ == "LoraInjectedLinear":
|
| 232 |
+
|
| 233 |
+
weight = _child_module.linear.weight
|
| 234 |
+
|
| 235 |
+
up_weight = loras.pop(0)
|
| 236 |
+
down_weight = loras.pop(0)
|
| 237 |
+
|
| 238 |
+
_module._modules[name].lora_up.weight = nn.Parameter(
|
| 239 |
+
up_weight.type(weight.dtype).to(weight.device) * alpha
|
| 240 |
+
+ _module._modules[name].lora_up.weight.to(weight.device) * beta
|
| 241 |
+
)
|
| 242 |
+
_module._modules[name].lora_down.weight = nn.Parameter(
|
| 243 |
+
down_weight.type(weight.dtype).to(weight.device) * alpha
|
| 244 |
+
+ _module._modules[name].lora_down.weight.to(weight.device)
|
| 245 |
+
* beta
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
_module._modules[name].to(weight.device)
|
| 249 |
+
|
| 250 |
+
|
| 251 |
def tune_lora_scale(model, alpha: float = 1.0):
|
| 252 |
for _module in model.modules():
|
| 253 |
if _module.__class__.__name__ == "LoraInjectedLinear":
|
| 254 |
_module.scale = alpha
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _text_lora_path(path: str) -> str:
|
| 258 |
+
assert path.endswith(".pt"), "Only .pt files are supported"
|
| 259 |
+
return ".".join(path.split(".")[:-1] + ["text_encoder", "pt"])
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _ti_lora_path(path: str) -> str:
|
| 263 |
+
assert path.endswith(".pt"), "Only .pt files are supported"
|
| 264 |
+
return ".".join(path.split(".")[:-1] + ["ti", "pt"])
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def load_learned_embed_in_clip(
|
| 268 |
+
learned_embeds_path, text_encoder, tokenizer, token=None, idempotent=False
|
| 269 |
+
):
|
| 270 |
+
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
|
| 271 |
+
|
| 272 |
+
# separate token and the embeds
|
| 273 |
+
trained_token = list(loaded_learned_embeds.keys())[0]
|
| 274 |
+
embeds = loaded_learned_embeds[trained_token]
|
| 275 |
+
|
| 276 |
+
# cast to dtype of text_encoder
|
| 277 |
+
dtype = text_encoder.get_input_embeddings().weight.dtype
|
| 278 |
+
|
| 279 |
+
# add the token in tokenizer
|
| 280 |
+
token = token if token is not None else trained_token
|
| 281 |
+
num_added_tokens = tokenizer.add_tokens(token)
|
| 282 |
+
i = 1
|
| 283 |
+
if num_added_tokens == 0 and idempotent:
|
| 284 |
+
return token
|
| 285 |
+
|
| 286 |
+
while num_added_tokens == 0:
|
| 287 |
+
print(f"The tokenizer already contains the token {token}.")
|
| 288 |
+
token = f"{token[:-1]}-{i}>"
|
| 289 |
+
print(f"Attempting to add the token {token}.")
|
| 290 |
+
num_added_tokens = tokenizer.add_tokens(token)
|
| 291 |
+
i += 1
|
| 292 |
+
|
| 293 |
+
# resize the token embeddings
|
| 294 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
| 295 |
+
|
| 296 |
+
# get the id for the token and assign the embeds
|
| 297 |
+
token_id = tokenizer.convert_tokens_to_ids(token)
|
| 298 |
+
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
|
| 299 |
+
return token
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
def patch_pipe(
|
| 303 |
+
pipe,
|
| 304 |
+
unet_path,
|
| 305 |
+
token,
|
| 306 |
+
alpha: float = 1.0,
|
| 307 |
+
r: int = 4,
|
| 308 |
+
patch_text=False,
|
| 309 |
+
patch_ti=False,
|
| 310 |
+
idempotent_token=True,
|
| 311 |
+
):
|
| 312 |
+
|
| 313 |
+
ti_path = _ti_lora_path(unet_path)
|
| 314 |
+
text_path = _text_lora_path(unet_path)
|
| 315 |
+
|
| 316 |
+
unet_has_lora = False
|
| 317 |
+
text_encoder_has_lora = False
|
| 318 |
+
|
| 319 |
+
for _module in pipe.unet.modules():
|
| 320 |
+
if _module.__class__.__name__ == "LoraInjectedLinear":
|
| 321 |
+
unet_has_lora = True
|
| 322 |
+
|
| 323 |
+
for _module in pipe.text_encoder.modules():
|
| 324 |
+
if _module.__class__.__name__ == "LoraInjectedLinear":
|
| 325 |
+
text_encoder_has_lora = True
|
| 326 |
+
|
| 327 |
+
if not unet_has_lora:
|
| 328 |
+
monkeypatch_lora(pipe.unet, torch.load(unet_path), r=r)
|
| 329 |
+
else:
|
| 330 |
+
monkeypatch_replace_lora(pipe.unet, torch.load(unet_path), r=r)
|
| 331 |
+
|
| 332 |
+
if patch_text:
|
| 333 |
+
if not text_encoder_has_lora:
|
| 334 |
+
monkeypatch_lora(
|
| 335 |
+
pipe.text_encoder,
|
| 336 |
+
torch.load(text_path),
|
| 337 |
+
target_replace_module=["CLIPAttention"],
|
| 338 |
+
r=r,
|
| 339 |
+
)
|
| 340 |
+
else:
|
| 341 |
+
|
| 342 |
+
monkeypatch_replace_lora(
|
| 343 |
+
pipe.text_encoder,
|
| 344 |
+
torch.load(text_path),
|
| 345 |
+
target_replace_module=["CLIPAttention"],
|
| 346 |
+
r=r,
|
| 347 |
+
)
|
| 348 |
+
if patch_ti:
|
| 349 |
+
token = load_learned_embed_in_clip(
|
| 350 |
+
ti_path,
|
| 351 |
+
pipe.text_encoder,
|
| 352 |
+
pipe.tokenizer,
|
| 353 |
+
token,
|
| 354 |
+
idempotent=idempotent_token,
|
| 355 |
+
)
|
lora_diffusion/to_ckpt_v2.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from https://gist.github.com/jachiam/8a5c0b607e38fcc585168b90c686eb05
|
| 2 |
+
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
| 3 |
+
# *Only* converts the UNet, VAE, and Text Encoder.
|
| 4 |
+
# Does not convert optimizer state or any other thing.
|
| 5 |
+
# Written by jachiam
|
| 6 |
+
import argparse
|
| 7 |
+
import os.path as osp
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# =================#
|
| 13 |
+
# UNet Conversion #
|
| 14 |
+
# =================#
|
| 15 |
+
|
| 16 |
+
unet_conversion_map = [
|
| 17 |
+
# (stable-diffusion, HF Diffusers)
|
| 18 |
+
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
| 19 |
+
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
| 20 |
+
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
| 21 |
+
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
| 22 |
+
("input_blocks.0.0.weight", "conv_in.weight"),
|
| 23 |
+
("input_blocks.0.0.bias", "conv_in.bias"),
|
| 24 |
+
("out.0.weight", "conv_norm_out.weight"),
|
| 25 |
+
("out.0.bias", "conv_norm_out.bias"),
|
| 26 |
+
("out.2.weight", "conv_out.weight"),
|
| 27 |
+
("out.2.bias", "conv_out.bias"),
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
unet_conversion_map_resnet = [
|
| 31 |
+
# (stable-diffusion, HF Diffusers)
|
| 32 |
+
("in_layers.0", "norm1"),
|
| 33 |
+
("in_layers.2", "conv1"),
|
| 34 |
+
("out_layers.0", "norm2"),
|
| 35 |
+
("out_layers.3", "conv2"),
|
| 36 |
+
("emb_layers.1", "time_emb_proj"),
|
| 37 |
+
("skip_connection", "conv_shortcut"),
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
unet_conversion_map_layer = []
|
| 41 |
+
# hardcoded number of downblocks and resnets/attentions...
|
| 42 |
+
# would need smarter logic for other networks.
|
| 43 |
+
for i in range(4):
|
| 44 |
+
# loop over downblocks/upblocks
|
| 45 |
+
|
| 46 |
+
for j in range(2):
|
| 47 |
+
# loop over resnets/attentions for downblocks
|
| 48 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
| 49 |
+
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
| 50 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
| 51 |
+
|
| 52 |
+
if i < 3:
|
| 53 |
+
# no attention layers in down_blocks.3
|
| 54 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
| 55 |
+
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
| 56 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
| 57 |
+
|
| 58 |
+
for j in range(3):
|
| 59 |
+
# loop over resnets/attentions for upblocks
|
| 60 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
| 61 |
+
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
| 62 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
| 63 |
+
|
| 64 |
+
if i > 0:
|
| 65 |
+
# no attention layers in up_blocks.0
|
| 66 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
| 67 |
+
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
| 68 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
| 69 |
+
|
| 70 |
+
if i < 3:
|
| 71 |
+
# no downsample in down_blocks.3
|
| 72 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
| 73 |
+
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
| 74 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
| 75 |
+
|
| 76 |
+
# no upsample in up_blocks.3
|
| 77 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
| 78 |
+
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
|
| 79 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
| 80 |
+
|
| 81 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
| 82 |
+
sd_mid_atn_prefix = "middle_block.1."
|
| 83 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
| 84 |
+
|
| 85 |
+
for j in range(2):
|
| 86 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
| 87 |
+
sd_mid_res_prefix = f"middle_block.{2*j}."
|
| 88 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def convert_unet_state_dict(unet_state_dict):
|
| 92 |
+
# buyer beware: this is a *brittle* function,
|
| 93 |
+
# and correct output requires that all of these pieces interact in
|
| 94 |
+
# the exact order in which I have arranged them.
|
| 95 |
+
mapping = {k: k for k in unet_state_dict.keys()}
|
| 96 |
+
for sd_name, hf_name in unet_conversion_map:
|
| 97 |
+
mapping[hf_name] = sd_name
|
| 98 |
+
for k, v in mapping.items():
|
| 99 |
+
if "resnets" in k:
|
| 100 |
+
for sd_part, hf_part in unet_conversion_map_resnet:
|
| 101 |
+
v = v.replace(hf_part, sd_part)
|
| 102 |
+
mapping[k] = v
|
| 103 |
+
for k, v in mapping.items():
|
| 104 |
+
for sd_part, hf_part in unet_conversion_map_layer:
|
| 105 |
+
v = v.replace(hf_part, sd_part)
|
| 106 |
+
mapping[k] = v
|
| 107 |
+
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
| 108 |
+
return new_state_dict
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
# ================#
|
| 112 |
+
# VAE Conversion #
|
| 113 |
+
# ================#
|
| 114 |
+
|
| 115 |
+
vae_conversion_map = [
|
| 116 |
+
# (stable-diffusion, HF Diffusers)
|
| 117 |
+
("nin_shortcut", "conv_shortcut"),
|
| 118 |
+
("norm_out", "conv_norm_out"),
|
| 119 |
+
("mid.attn_1.", "mid_block.attentions.0."),
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
for i in range(4):
|
| 123 |
+
# down_blocks have two resnets
|
| 124 |
+
for j in range(2):
|
| 125 |
+
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
| 126 |
+
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
| 127 |
+
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
| 128 |
+
|
| 129 |
+
if i < 3:
|
| 130 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
| 131 |
+
sd_downsample_prefix = f"down.{i}.downsample."
|
| 132 |
+
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
| 133 |
+
|
| 134 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
| 135 |
+
sd_upsample_prefix = f"up.{3-i}.upsample."
|
| 136 |
+
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
| 137 |
+
|
| 138 |
+
# up_blocks have three resnets
|
| 139 |
+
# also, up blocks in hf are numbered in reverse from sd
|
| 140 |
+
for j in range(3):
|
| 141 |
+
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
| 142 |
+
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
|
| 143 |
+
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
| 144 |
+
|
| 145 |
+
# this part accounts for mid blocks in both the encoder and the decoder
|
| 146 |
+
for i in range(2):
|
| 147 |
+
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
| 148 |
+
sd_mid_res_prefix = f"mid.block_{i+1}."
|
| 149 |
+
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
vae_conversion_map_attn = [
|
| 153 |
+
# (stable-diffusion, HF Diffusers)
|
| 154 |
+
("norm.", "group_norm."),
|
| 155 |
+
("q.", "query."),
|
| 156 |
+
("k.", "key."),
|
| 157 |
+
("v.", "value."),
|
| 158 |
+
("proj_out.", "proj_attn."),
|
| 159 |
+
]
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def reshape_weight_for_sd(w):
|
| 163 |
+
# convert HF linear weights to SD conv2d weights
|
| 164 |
+
return w.reshape(*w.shape, 1, 1)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def convert_vae_state_dict(vae_state_dict):
|
| 168 |
+
mapping = {k: k for k in vae_state_dict.keys()}
|
| 169 |
+
for k, v in mapping.items():
|
| 170 |
+
for sd_part, hf_part in vae_conversion_map:
|
| 171 |
+
v = v.replace(hf_part, sd_part)
|
| 172 |
+
mapping[k] = v
|
| 173 |
+
for k, v in mapping.items():
|
| 174 |
+
if "attentions" in k:
|
| 175 |
+
for sd_part, hf_part in vae_conversion_map_attn:
|
| 176 |
+
v = v.replace(hf_part, sd_part)
|
| 177 |
+
mapping[k] = v
|
| 178 |
+
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
| 179 |
+
weights_to_convert = ["q", "k", "v", "proj_out"]
|
| 180 |
+
for k, v in new_state_dict.items():
|
| 181 |
+
for weight_name in weights_to_convert:
|
| 182 |
+
if f"mid.attn_1.{weight_name}.weight" in k:
|
| 183 |
+
print(f"Reshaping {k} for SD format")
|
| 184 |
+
new_state_dict[k] = reshape_weight_for_sd(v)
|
| 185 |
+
return new_state_dict
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# =========================#
|
| 189 |
+
# Text Encoder Conversion #
|
| 190 |
+
# =========================#
|
| 191 |
+
# pretty much a no-op
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def convert_text_enc_state_dict(text_enc_dict):
|
| 195 |
+
return text_enc_dict
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def convert_to_ckpt(model_path, checkpoint_path, as_half):
|
| 199 |
+
|
| 200 |
+
assert model_path is not None, "Must provide a model path!"
|
| 201 |
+
|
| 202 |
+
assert checkpoint_path is not None, "Must provide a checkpoint path!"
|
| 203 |
+
|
| 204 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
| 205 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
| 206 |
+
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
| 207 |
+
|
| 208 |
+
# Convert the UNet model
|
| 209 |
+
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
| 210 |
+
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
| 211 |
+
unet_state_dict = {
|
| 212 |
+
"model.diffusion_model." + k: v for k, v in unet_state_dict.items()
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
# Convert the VAE model
|
| 216 |
+
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
| 217 |
+
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
| 218 |
+
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
| 219 |
+
|
| 220 |
+
# Convert the text encoder model
|
| 221 |
+
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
| 222 |
+
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
| 223 |
+
text_enc_dict = {
|
| 224 |
+
"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
# Put together new checkpoint
|
| 228 |
+
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
| 229 |
+
if as_half:
|
| 230 |
+
state_dict = {k: v.half() for k, v in state_dict.items()}
|
| 231 |
+
state_dict = {"state_dict": state_dict}
|
| 232 |
+
torch.save(state_dict, checkpoint_path)
|