Spaces:
Configuration error
Configuration error
updated file
Browse files- train_lora_dreambooth.py +956 -0
train_lora_dreambooth.py
ADDED
|
@@ -0,0 +1,956 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Bootstrapped from:
|
| 2 |
+
# https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py
|
| 3 |
+
|
| 4 |
+
import argparse
|
| 5 |
+
import hashlib
|
| 6 |
+
import itertools
|
| 7 |
+
import math
|
| 8 |
+
import os
|
| 9 |
+
import inspect
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from typing import Optional
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn.functional as F
|
| 15 |
+
import torch.utils.checkpoint
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
from accelerate import Accelerator
|
| 19 |
+
from accelerate.logging import get_logger
|
| 20 |
+
from accelerate.utils import set_seed
|
| 21 |
+
from diffusers import (
|
| 22 |
+
AutoencoderKL,
|
| 23 |
+
DDPMScheduler,
|
| 24 |
+
StableDiffusionPipeline,
|
| 25 |
+
UNet2DConditionModel,
|
| 26 |
+
)
|
| 27 |
+
from diffusers.optimization import get_scheduler
|
| 28 |
+
from huggingface_hub import HfFolder, Repository, whoami
|
| 29 |
+
|
| 30 |
+
from tqdm.auto import tqdm
|
| 31 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
| 32 |
+
|
| 33 |
+
from lora_diffusion import (
|
| 34 |
+
inject_trainable_lora,
|
| 35 |
+
save_lora_weight,
|
| 36 |
+
extract_lora_ups_down,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
from torch.utils.data import Dataset
|
| 40 |
+
from PIL import Image
|
| 41 |
+
from torchvision import transforms
|
| 42 |
+
|
| 43 |
+
from pathlib import Path
|
| 44 |
+
|
| 45 |
+
import random
|
| 46 |
+
import re
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class DreamBoothDataset(Dataset):
|
| 50 |
+
"""
|
| 51 |
+
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
| 52 |
+
It pre-processes the images and the tokenizes prompts.
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
def __init__(
|
| 56 |
+
self,
|
| 57 |
+
instance_data_root,
|
| 58 |
+
instance_prompt,
|
| 59 |
+
tokenizer,
|
| 60 |
+
class_data_root=None,
|
| 61 |
+
class_prompt=None,
|
| 62 |
+
size=512,
|
| 63 |
+
center_crop=False,
|
| 64 |
+
color_jitter=False,
|
| 65 |
+
):
|
| 66 |
+
self.size = size
|
| 67 |
+
self.center_crop = center_crop
|
| 68 |
+
self.tokenizer = tokenizer
|
| 69 |
+
|
| 70 |
+
self.instance_data_root = Path(instance_data_root)
|
| 71 |
+
if not self.instance_data_root.exists():
|
| 72 |
+
raise ValueError("Instance images root doesn't exists.")
|
| 73 |
+
|
| 74 |
+
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
| 75 |
+
self.num_instance_images = len(self.instance_images_path)
|
| 76 |
+
self.instance_prompt = instance_prompt
|
| 77 |
+
self._length = self.num_instance_images
|
| 78 |
+
|
| 79 |
+
if class_data_root is not None:
|
| 80 |
+
self.class_data_root = Path(class_data_root)
|
| 81 |
+
self.class_data_root.mkdir(parents=True, exist_ok=True)
|
| 82 |
+
self.class_images_path = list(self.class_data_root.iterdir())
|
| 83 |
+
self.num_class_images = len(self.class_images_path)
|
| 84 |
+
self._length = max(self.num_class_images, self.num_instance_images)
|
| 85 |
+
self.class_prompt = class_prompt
|
| 86 |
+
else:
|
| 87 |
+
self.class_data_root = None
|
| 88 |
+
|
| 89 |
+
self.image_transforms = transforms.Compose(
|
| 90 |
+
[
|
| 91 |
+
transforms.Resize(
|
| 92 |
+
size, interpolation=transforms.InterpolationMode.BILINEAR
|
| 93 |
+
),
|
| 94 |
+
transforms.CenterCrop(size)
|
| 95 |
+
if center_crop
|
| 96 |
+
else transforms.RandomCrop(size),
|
| 97 |
+
transforms.ColorJitter(0.2, 0.1)
|
| 98 |
+
if color_jitter
|
| 99 |
+
else transforms.Lambda(lambda x: x),
|
| 100 |
+
transforms.ToTensor(),
|
| 101 |
+
transforms.Normalize([0.5], [0.5]),
|
| 102 |
+
]
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
def __len__(self):
|
| 106 |
+
return self._length
|
| 107 |
+
|
| 108 |
+
def __getitem__(self, index):
|
| 109 |
+
example = {}
|
| 110 |
+
instance_image = Image.open(
|
| 111 |
+
self.instance_images_path[index % self.num_instance_images]
|
| 112 |
+
)
|
| 113 |
+
if not instance_image.mode == "RGB":
|
| 114 |
+
instance_image = instance_image.convert("RGB")
|
| 115 |
+
example["instance_images"] = self.image_transforms(instance_image)
|
| 116 |
+
example["instance_prompt_ids"] = self.tokenizer(
|
| 117 |
+
self.instance_prompt,
|
| 118 |
+
padding="do_not_pad",
|
| 119 |
+
truncation=True,
|
| 120 |
+
max_length=self.tokenizer.model_max_length,
|
| 121 |
+
).input_ids
|
| 122 |
+
|
| 123 |
+
if self.class_data_root:
|
| 124 |
+
class_image = Image.open(
|
| 125 |
+
self.class_images_path[index % self.num_class_images]
|
| 126 |
+
)
|
| 127 |
+
if not class_image.mode == "RGB":
|
| 128 |
+
class_image = class_image.convert("RGB")
|
| 129 |
+
example["class_images"] = self.image_transforms(class_image)
|
| 130 |
+
example["class_prompt_ids"] = self.tokenizer(
|
| 131 |
+
self.class_prompt,
|
| 132 |
+
padding="do_not_pad",
|
| 133 |
+
truncation=True,
|
| 134 |
+
max_length=self.tokenizer.model_max_length,
|
| 135 |
+
).input_ids
|
| 136 |
+
|
| 137 |
+
return example
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
class PromptDataset(Dataset):
|
| 141 |
+
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
| 142 |
+
|
| 143 |
+
def __init__(self, prompt, num_samples):
|
| 144 |
+
self.prompt = prompt
|
| 145 |
+
self.num_samples = num_samples
|
| 146 |
+
|
| 147 |
+
def __len__(self):
|
| 148 |
+
return self.num_samples
|
| 149 |
+
|
| 150 |
+
def __getitem__(self, index):
|
| 151 |
+
example = {}
|
| 152 |
+
example["prompt"] = self.prompt
|
| 153 |
+
example["index"] = index
|
| 154 |
+
return example
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
logger = get_logger(__name__)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def parse_args(input_args=None):
|
| 161 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
| 162 |
+
parser.add_argument(
|
| 163 |
+
"--pretrained_model_name_or_path",
|
| 164 |
+
type=str,
|
| 165 |
+
default=None,
|
| 166 |
+
required=True,
|
| 167 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 168 |
+
)
|
| 169 |
+
parser.add_argument(
|
| 170 |
+
"--pretrained_vae_name_or_path",
|
| 171 |
+
type=str,
|
| 172 |
+
default=None,
|
| 173 |
+
help="Path to pretrained vae or vae identifier from huggingface.co/models.",
|
| 174 |
+
)
|
| 175 |
+
parser.add_argument(
|
| 176 |
+
"--revision",
|
| 177 |
+
type=str,
|
| 178 |
+
default=None,
|
| 179 |
+
required=False,
|
| 180 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
| 181 |
+
)
|
| 182 |
+
parser.add_argument(
|
| 183 |
+
"--tokenizer_name",
|
| 184 |
+
type=str,
|
| 185 |
+
default=None,
|
| 186 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
| 187 |
+
)
|
| 188 |
+
parser.add_argument(
|
| 189 |
+
"--instance_data_dir",
|
| 190 |
+
type=str,
|
| 191 |
+
default=None,
|
| 192 |
+
required=True,
|
| 193 |
+
help="A folder containing the training data of instance images.",
|
| 194 |
+
)
|
| 195 |
+
parser.add_argument(
|
| 196 |
+
"--class_data_dir",
|
| 197 |
+
type=str,
|
| 198 |
+
default=None,
|
| 199 |
+
required=False,
|
| 200 |
+
help="A folder containing the training data of class images.",
|
| 201 |
+
)
|
| 202 |
+
parser.add_argument(
|
| 203 |
+
"--instance_prompt",
|
| 204 |
+
type=str,
|
| 205 |
+
default=None,
|
| 206 |
+
required=True,
|
| 207 |
+
help="The prompt with identifier specifying the instance",
|
| 208 |
+
)
|
| 209 |
+
parser.add_argument(
|
| 210 |
+
"--class_prompt",
|
| 211 |
+
type=str,
|
| 212 |
+
default=None,
|
| 213 |
+
help="The prompt to specify images in the same class as provided instance images.",
|
| 214 |
+
)
|
| 215 |
+
parser.add_argument(
|
| 216 |
+
"--with_prior_preservation",
|
| 217 |
+
default=False,
|
| 218 |
+
action="store_true",
|
| 219 |
+
help="Flag to add prior preservation loss.",
|
| 220 |
+
)
|
| 221 |
+
parser.add_argument(
|
| 222 |
+
"--prior_loss_weight",
|
| 223 |
+
type=float,
|
| 224 |
+
default=1.0,
|
| 225 |
+
help="The weight of prior preservation loss.",
|
| 226 |
+
)
|
| 227 |
+
parser.add_argument(
|
| 228 |
+
"--num_class_images",
|
| 229 |
+
type=int,
|
| 230 |
+
default=100,
|
| 231 |
+
help=(
|
| 232 |
+
"Minimal class images for prior preservation loss. If not have enough images, additional images will be"
|
| 233 |
+
" sampled with class_prompt."
|
| 234 |
+
),
|
| 235 |
+
)
|
| 236 |
+
parser.add_argument(
|
| 237 |
+
"--output_dir",
|
| 238 |
+
type=str,
|
| 239 |
+
default="text-inversion-model",
|
| 240 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
| 241 |
+
)
|
| 242 |
+
parser.add_argument(
|
| 243 |
+
"--seed", type=int, default=None, help="A seed for reproducible training."
|
| 244 |
+
)
|
| 245 |
+
parser.add_argument(
|
| 246 |
+
"--resolution",
|
| 247 |
+
type=int,
|
| 248 |
+
default=512,
|
| 249 |
+
help=(
|
| 250 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
| 251 |
+
" resolution"
|
| 252 |
+
),
|
| 253 |
+
)
|
| 254 |
+
parser.add_argument(
|
| 255 |
+
"--center_crop",
|
| 256 |
+
action="store_true",
|
| 257 |
+
help="Whether to center crop images before resizing to resolution",
|
| 258 |
+
)
|
| 259 |
+
parser.add_argument(
|
| 260 |
+
"--color_jitter",
|
| 261 |
+
action="store_true",
|
| 262 |
+
help="Whether to apply color jitter to images",
|
| 263 |
+
)
|
| 264 |
+
parser.add_argument(
|
| 265 |
+
"--train_text_encoder",
|
| 266 |
+
action="store_true",
|
| 267 |
+
help="Whether to train the text encoder",
|
| 268 |
+
)
|
| 269 |
+
parser.add_argument(
|
| 270 |
+
"--train_batch_size",
|
| 271 |
+
type=int,
|
| 272 |
+
default=4,
|
| 273 |
+
help="Batch size (per device) for the training dataloader.",
|
| 274 |
+
)
|
| 275 |
+
parser.add_argument(
|
| 276 |
+
"--sample_batch_size",
|
| 277 |
+
type=int,
|
| 278 |
+
default=4,
|
| 279 |
+
help="Batch size (per device) for sampling images.",
|
| 280 |
+
)
|
| 281 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
| 282 |
+
parser.add_argument(
|
| 283 |
+
"--max_train_steps",
|
| 284 |
+
type=int,
|
| 285 |
+
default=None,
|
| 286 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
| 287 |
+
)
|
| 288 |
+
parser.add_argument(
|
| 289 |
+
"--save_steps",
|
| 290 |
+
type=int,
|
| 291 |
+
default=500,
|
| 292 |
+
help="Save checkpoint every X updates steps.",
|
| 293 |
+
)
|
| 294 |
+
parser.add_argument(
|
| 295 |
+
"--gradient_accumulation_steps",
|
| 296 |
+
type=int,
|
| 297 |
+
default=1,
|
| 298 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
| 299 |
+
)
|
| 300 |
+
parser.add_argument(
|
| 301 |
+
"--gradient_checkpointing",
|
| 302 |
+
action="store_true",
|
| 303 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
| 304 |
+
)
|
| 305 |
+
parser.add_argument(
|
| 306 |
+
"--lora_rank",
|
| 307 |
+
type=int,
|
| 308 |
+
default=4,
|
| 309 |
+
help="Rank of LoRA approximation.",
|
| 310 |
+
)
|
| 311 |
+
parser.add_argument(
|
| 312 |
+
"--learning_rate",
|
| 313 |
+
type=float,
|
| 314 |
+
default=None,
|
| 315 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
| 316 |
+
)
|
| 317 |
+
parser.add_argument(
|
| 318 |
+
"--learning_rate_text",
|
| 319 |
+
type=float,
|
| 320 |
+
default=5e-6,
|
| 321 |
+
help="Initial learning rate for text encoder (after the potential warmup period) to use.",
|
| 322 |
+
)
|
| 323 |
+
parser.add_argument(
|
| 324 |
+
"--scale_lr",
|
| 325 |
+
action="store_true",
|
| 326 |
+
default=False,
|
| 327 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
| 328 |
+
)
|
| 329 |
+
parser.add_argument(
|
| 330 |
+
"--lr_scheduler",
|
| 331 |
+
type=str,
|
| 332 |
+
default="constant",
|
| 333 |
+
help=(
|
| 334 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
| 335 |
+
' "constant", "constant_with_warmup"]'
|
| 336 |
+
),
|
| 337 |
+
)
|
| 338 |
+
parser.add_argument(
|
| 339 |
+
"--lr_warmup_steps",
|
| 340 |
+
type=int,
|
| 341 |
+
default=500,
|
| 342 |
+
help="Number of steps for the warmup in the lr scheduler.",
|
| 343 |
+
)
|
| 344 |
+
parser.add_argument(
|
| 345 |
+
"--use_8bit_adam",
|
| 346 |
+
action="store_true",
|
| 347 |
+
help="Whether or not to use 8-bit Adam from bitsandbytes.",
|
| 348 |
+
)
|
| 349 |
+
parser.add_argument(
|
| 350 |
+
"--adam_beta1",
|
| 351 |
+
type=float,
|
| 352 |
+
default=0.9,
|
| 353 |
+
help="The beta1 parameter for the Adam optimizer.",
|
| 354 |
+
)
|
| 355 |
+
parser.add_argument(
|
| 356 |
+
"--adam_beta2",
|
| 357 |
+
type=float,
|
| 358 |
+
default=0.999,
|
| 359 |
+
help="The beta2 parameter for the Adam optimizer.",
|
| 360 |
+
)
|
| 361 |
+
parser.add_argument(
|
| 362 |
+
"--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use."
|
| 363 |
+
)
|
| 364 |
+
parser.add_argument(
|
| 365 |
+
"--adam_epsilon",
|
| 366 |
+
type=float,
|
| 367 |
+
default=1e-08,
|
| 368 |
+
help="Epsilon value for the Adam optimizer",
|
| 369 |
+
)
|
| 370 |
+
parser.add_argument(
|
| 371 |
+
"--max_grad_norm", default=1.0, type=float, help="Max gradient norm."
|
| 372 |
+
)
|
| 373 |
+
parser.add_argument(
|
| 374 |
+
"--push_to_hub",
|
| 375 |
+
action="store_true",
|
| 376 |
+
help="Whether or not to push the model to the Hub.",
|
| 377 |
+
)
|
| 378 |
+
parser.add_argument(
|
| 379 |
+
"--hub_token",
|
| 380 |
+
type=str,
|
| 381 |
+
default=None,
|
| 382 |
+
help="The token to use to push to the Model Hub.",
|
| 383 |
+
)
|
| 384 |
+
parser.add_argument(
|
| 385 |
+
"--logging_dir",
|
| 386 |
+
type=str,
|
| 387 |
+
default="logs",
|
| 388 |
+
help=(
|
| 389 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
| 390 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
| 391 |
+
),
|
| 392 |
+
)
|
| 393 |
+
parser.add_argument(
|
| 394 |
+
"--mixed_precision",
|
| 395 |
+
type=str,
|
| 396 |
+
default=None,
|
| 397 |
+
choices=["no", "fp16", "bf16"],
|
| 398 |
+
help=(
|
| 399 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
| 400 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
| 401 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
| 402 |
+
),
|
| 403 |
+
)
|
| 404 |
+
parser.add_argument(
|
| 405 |
+
"--local_rank",
|
| 406 |
+
type=int,
|
| 407 |
+
default=-1,
|
| 408 |
+
help="For distributed training: local_rank",
|
| 409 |
+
)
|
| 410 |
+
parser.add_argument(
|
| 411 |
+
"--resume_unet",
|
| 412 |
+
type=str,
|
| 413 |
+
default=None,
|
| 414 |
+
help=("File path for unet lora to resume training."),
|
| 415 |
+
)
|
| 416 |
+
parser.add_argument(
|
| 417 |
+
"--resume_text_encoder",
|
| 418 |
+
type=str,
|
| 419 |
+
default=None,
|
| 420 |
+
help=("File path for text encoder lora to resume training."),
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
if input_args is not None:
|
| 424 |
+
args = parser.parse_args(input_args)
|
| 425 |
+
else:
|
| 426 |
+
args = parser.parse_args()
|
| 427 |
+
|
| 428 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
| 429 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
| 430 |
+
args.local_rank = env_local_rank
|
| 431 |
+
|
| 432 |
+
if args.with_prior_preservation:
|
| 433 |
+
if args.class_data_dir is None:
|
| 434 |
+
raise ValueError("You must specify a data directory for class images.")
|
| 435 |
+
if args.class_prompt is None:
|
| 436 |
+
raise ValueError("You must specify prompt for class images.")
|
| 437 |
+
else:
|
| 438 |
+
if args.class_data_dir is not None:
|
| 439 |
+
logger.warning(
|
| 440 |
+
"You need not use --class_data_dir without --with_prior_preservation."
|
| 441 |
+
)
|
| 442 |
+
if args.class_prompt is not None:
|
| 443 |
+
logger.warning(
|
| 444 |
+
"You need not use --class_prompt without --with_prior_preservation."
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
return args
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
def main(args):
|
| 451 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
| 452 |
+
|
| 453 |
+
accelerator = Accelerator(
|
| 454 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
| 455 |
+
mixed_precision=args.mixed_precision,
|
| 456 |
+
log_with="tensorboard",
|
| 457 |
+
logging_dir=logging_dir,
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
|
| 461 |
+
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
|
| 462 |
+
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
|
| 463 |
+
if (
|
| 464 |
+
args.train_text_encoder
|
| 465 |
+
and args.gradient_accumulation_steps > 1
|
| 466 |
+
and accelerator.num_processes > 1
|
| 467 |
+
):
|
| 468 |
+
raise ValueError(
|
| 469 |
+
"Gradient accumulation is not supported when training the text encoder in distributed training. "
|
| 470 |
+
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
if args.seed is not None:
|
| 474 |
+
set_seed(args.seed)
|
| 475 |
+
|
| 476 |
+
if args.with_prior_preservation:
|
| 477 |
+
class_images_dir = Path(args.class_data_dir)
|
| 478 |
+
if not class_images_dir.exists():
|
| 479 |
+
class_images_dir.mkdir(parents=True)
|
| 480 |
+
cur_class_images = len(list(class_images_dir.iterdir()))
|
| 481 |
+
|
| 482 |
+
if cur_class_images < args.num_class_images:
|
| 483 |
+
torch_dtype = (
|
| 484 |
+
torch.float16 if accelerator.device.type == "cuda" else torch.float32
|
| 485 |
+
)
|
| 486 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
| 487 |
+
args.pretrained_model_name_or_path,
|
| 488 |
+
torch_dtype=torch_dtype,
|
| 489 |
+
safety_checker=None,
|
| 490 |
+
revision=args.revision,
|
| 491 |
+
)
|
| 492 |
+
pipeline.set_progress_bar_config(disable=True)
|
| 493 |
+
|
| 494 |
+
num_new_images = args.num_class_images - cur_class_images
|
| 495 |
+
logger.info(f"Number of class images to sample: {num_new_images}.")
|
| 496 |
+
|
| 497 |
+
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
| 498 |
+
sample_dataloader = torch.utils.data.DataLoader(
|
| 499 |
+
sample_dataset, batch_size=args.sample_batch_size
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
sample_dataloader = accelerator.prepare(sample_dataloader)
|
| 503 |
+
pipeline.to(accelerator.device)
|
| 504 |
+
|
| 505 |
+
for example in tqdm(
|
| 506 |
+
sample_dataloader,
|
| 507 |
+
desc="Generating class images",
|
| 508 |
+
disable=not accelerator.is_local_main_process,
|
| 509 |
+
):
|
| 510 |
+
images = pipeline(example["prompt"]).images
|
| 511 |
+
|
| 512 |
+
for i, image in enumerate(images):
|
| 513 |
+
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
|
| 514 |
+
image_filename = (
|
| 515 |
+
class_images_dir
|
| 516 |
+
/ f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
| 517 |
+
)
|
| 518 |
+
image.save(image_filename)
|
| 519 |
+
|
| 520 |
+
del pipeline
|
| 521 |
+
if torch.cuda.is_available():
|
| 522 |
+
torch.cuda.empty_cache()
|
| 523 |
+
|
| 524 |
+
# Handle the repository creation
|
| 525 |
+
if accelerator.is_main_process:
|
| 526 |
+
|
| 527 |
+
if args.output_dir is not None:
|
| 528 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 529 |
+
|
| 530 |
+
# Load the tokenizer
|
| 531 |
+
if args.tokenizer_name:
|
| 532 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 533 |
+
args.tokenizer_name,
|
| 534 |
+
revision=args.revision,
|
| 535 |
+
)
|
| 536 |
+
elif args.pretrained_model_name_or_path:
|
| 537 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 538 |
+
args.pretrained_model_name_or_path,
|
| 539 |
+
subfolder="tokenizer",
|
| 540 |
+
revision=args.revision,
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
# Load models and create wrapper for stable diffusion
|
| 544 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
| 545 |
+
args.pretrained_model_name_or_path,
|
| 546 |
+
subfolder="text_encoder",
|
| 547 |
+
revision=args.revision,
|
| 548 |
+
)
|
| 549 |
+
vae = AutoencoderKL.from_pretrained(
|
| 550 |
+
args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path,
|
| 551 |
+
subfolder=None if args.pretrained_vae_name_or_path else "vae",
|
| 552 |
+
revision=None if args.pretrained_vae_name_or_path else args.revision,
|
| 553 |
+
)
|
| 554 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 555 |
+
args.pretrained_model_name_or_path,
|
| 556 |
+
subfolder="unet",
|
| 557 |
+
revision=args.revision,
|
| 558 |
+
)
|
| 559 |
+
unet.requires_grad_(False)
|
| 560 |
+
unet_lora_params, _ = inject_trainable_lora(
|
| 561 |
+
unet, r=args.lora_rank, loras=args.resume_unet
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
for _up, _down in extract_lora_ups_down(unet):
|
| 565 |
+
print("Before training: Unet First Layer lora up", _up.weight.data)
|
| 566 |
+
print("Before training: Unet First Layer lora down", _down.weight.data)
|
| 567 |
+
break
|
| 568 |
+
|
| 569 |
+
vae.requires_grad_(False)
|
| 570 |
+
text_encoder.requires_grad_(False)
|
| 571 |
+
|
| 572 |
+
if args.train_text_encoder:
|
| 573 |
+
text_encoder_lora_params, _ = inject_trainable_lora(
|
| 574 |
+
text_encoder,
|
| 575 |
+
target_replace_module=["CLIPAttention"],
|
| 576 |
+
r=args.lora_rank,
|
| 577 |
+
)
|
| 578 |
+
for _up, _down in extract_lora_ups_down(
|
| 579 |
+
text_encoder, target_replace_module=["CLIPAttention"]
|
| 580 |
+
):
|
| 581 |
+
print("Before training: text encoder First Layer lora up", _up.weight.data)
|
| 582 |
+
print(
|
| 583 |
+
"Before training: text encoder First Layer lora down", _down.weight.data
|
| 584 |
+
)
|
| 585 |
+
break
|
| 586 |
+
|
| 587 |
+
if args.gradient_checkpointing:
|
| 588 |
+
unet.enable_gradient_checkpointing()
|
| 589 |
+
if args.train_text_encoder:
|
| 590 |
+
text_encoder.gradient_checkpointing_enable()
|
| 591 |
+
|
| 592 |
+
if args.scale_lr:
|
| 593 |
+
args.learning_rate = (
|
| 594 |
+
args.learning_rate
|
| 595 |
+
* args.gradient_accumulation_steps
|
| 596 |
+
* args.train_batch_size
|
| 597 |
+
* accelerator.num_processes
|
| 598 |
+
)
|
| 599 |
+
|
| 600 |
+
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
| 601 |
+
if args.use_8bit_adam:
|
| 602 |
+
try:
|
| 603 |
+
import bitsandbytes as bnb
|
| 604 |
+
except ImportError:
|
| 605 |
+
raise ImportError(
|
| 606 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
optimizer_class = bnb.optim.AdamW8bit
|
| 610 |
+
else:
|
| 611 |
+
optimizer_class = torch.optim.AdamW
|
| 612 |
+
|
| 613 |
+
text_lr = (
|
| 614 |
+
args.learning_rate
|
| 615 |
+
if args.learning_rate_text is None
|
| 616 |
+
else args.learning_rate_text
|
| 617 |
+
)
|
| 618 |
+
|
| 619 |
+
params_to_optimize = (
|
| 620 |
+
[
|
| 621 |
+
{"params": itertools.chain(*unet_lora_params), "lr": args.learning_rate},
|
| 622 |
+
{
|
| 623 |
+
"params": itertools.chain(*text_encoder_lora_params),
|
| 624 |
+
"lr": text_lr,
|
| 625 |
+
},
|
| 626 |
+
]
|
| 627 |
+
if args.train_text_encoder
|
| 628 |
+
else itertools.chain(*unet_lora_params)
|
| 629 |
+
)
|
| 630 |
+
optimizer = optimizer_class(
|
| 631 |
+
params_to_optimize,
|
| 632 |
+
lr=args.learning_rate,
|
| 633 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
| 634 |
+
weight_decay=args.adam_weight_decay,
|
| 635 |
+
eps=args.adam_epsilon,
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
noise_scheduler = DDPMScheduler.from_config(
|
| 639 |
+
args.pretrained_model_name_or_path, subfolder="scheduler"
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
train_dataset = DreamBoothDataset(
|
| 643 |
+
instance_data_root=args.instance_data_dir,
|
| 644 |
+
instance_prompt=args.instance_prompt,
|
| 645 |
+
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
|
| 646 |
+
class_prompt=args.class_prompt,
|
| 647 |
+
tokenizer=tokenizer,
|
| 648 |
+
size=args.resolution,
|
| 649 |
+
center_crop=args.center_crop,
|
| 650 |
+
color_jitter=args.color_jitter,
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
def collate_fn(examples):
|
| 654 |
+
input_ids = [example["instance_prompt_ids"] for example in examples]
|
| 655 |
+
pixel_values = [example["instance_images"] for example in examples]
|
| 656 |
+
|
| 657 |
+
# Concat class and instance examples for prior preservation.
|
| 658 |
+
# We do this to avoid doing two forward passes.
|
| 659 |
+
if args.with_prior_preservation:
|
| 660 |
+
input_ids += [example["class_prompt_ids"] for example in examples]
|
| 661 |
+
pixel_values += [example["class_images"] for example in examples]
|
| 662 |
+
|
| 663 |
+
pixel_values = torch.stack(pixel_values)
|
| 664 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
| 665 |
+
|
| 666 |
+
input_ids = tokenizer.pad(
|
| 667 |
+
{"input_ids": input_ids},
|
| 668 |
+
padding="max_length",
|
| 669 |
+
max_length=tokenizer.model_max_length,
|
| 670 |
+
return_tensors="pt",
|
| 671 |
+
).input_ids
|
| 672 |
+
|
| 673 |
+
batch = {
|
| 674 |
+
"input_ids": input_ids,
|
| 675 |
+
"pixel_values": pixel_values,
|
| 676 |
+
}
|
| 677 |
+
return batch
|
| 678 |
+
|
| 679 |
+
train_dataloader = torch.utils.data.DataLoader(
|
| 680 |
+
train_dataset,
|
| 681 |
+
batch_size=args.train_batch_size,
|
| 682 |
+
shuffle=True,
|
| 683 |
+
collate_fn=collate_fn,
|
| 684 |
+
num_workers=1,
|
| 685 |
+
)
|
| 686 |
+
|
| 687 |
+
# Scheduler and math around the number of training steps.
|
| 688 |
+
overrode_max_train_steps = False
|
| 689 |
+
num_update_steps_per_epoch = math.ceil(
|
| 690 |
+
len(train_dataloader) / args.gradient_accumulation_steps
|
| 691 |
+
)
|
| 692 |
+
if args.max_train_steps is None:
|
| 693 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
| 694 |
+
overrode_max_train_steps = True
|
| 695 |
+
|
| 696 |
+
lr_scheduler = get_scheduler(
|
| 697 |
+
args.lr_scheduler,
|
| 698 |
+
optimizer=optimizer,
|
| 699 |
+
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
|
| 700 |
+
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
|
| 701 |
+
)
|
| 702 |
+
|
| 703 |
+
if args.train_text_encoder:
|
| 704 |
+
(
|
| 705 |
+
unet,
|
| 706 |
+
text_encoder,
|
| 707 |
+
optimizer,
|
| 708 |
+
train_dataloader,
|
| 709 |
+
lr_scheduler,
|
| 710 |
+
) = accelerator.prepare(
|
| 711 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
| 712 |
+
)
|
| 713 |
+
else:
|
| 714 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
| 715 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
| 716 |
+
)
|
| 717 |
+
|
| 718 |
+
weight_dtype = torch.float32
|
| 719 |
+
if accelerator.mixed_precision == "fp16":
|
| 720 |
+
weight_dtype = torch.float16
|
| 721 |
+
elif accelerator.mixed_precision == "bf16":
|
| 722 |
+
weight_dtype = torch.bfloat16
|
| 723 |
+
|
| 724 |
+
# Move text_encode and vae to gpu.
|
| 725 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
| 726 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
| 727 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
| 728 |
+
if not args.train_text_encoder:
|
| 729 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
| 730 |
+
|
| 731 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
| 732 |
+
num_update_steps_per_epoch = math.ceil(
|
| 733 |
+
len(train_dataloader) / args.gradient_accumulation_steps
|
| 734 |
+
)
|
| 735 |
+
if overrode_max_train_steps:
|
| 736 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
| 737 |
+
# Afterwards we recalculate our number of training epochs
|
| 738 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
| 739 |
+
|
| 740 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
| 741 |
+
# The trackers initializes automatically on the main process.
|
| 742 |
+
if accelerator.is_main_process:
|
| 743 |
+
accelerator.init_trackers("dreambooth", config=vars(args))
|
| 744 |
+
|
| 745 |
+
# Train!
|
| 746 |
+
total_batch_size = (
|
| 747 |
+
args.train_batch_size
|
| 748 |
+
* accelerator.num_processes
|
| 749 |
+
* args.gradient_accumulation_steps
|
| 750 |
+
)
|
| 751 |
+
|
| 752 |
+
print("***** Running training *****")
|
| 753 |
+
print(f" Num examples = {len(train_dataset)}")
|
| 754 |
+
print(f" Num batches each epoch = {len(train_dataloader)}")
|
| 755 |
+
print(f" Num Epochs = {args.num_train_epochs}")
|
| 756 |
+
print(f" Instantaneous batch size per device = {args.train_batch_size}")
|
| 757 |
+
print(
|
| 758 |
+
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
|
| 759 |
+
)
|
| 760 |
+
print(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
| 761 |
+
print(f" Total optimization steps = {args.max_train_steps}")
|
| 762 |
+
# Only show the progress bar once on each machine.
|
| 763 |
+
progress_bar = tqdm(
|
| 764 |
+
range(args.max_train_steps), disable=not accelerator.is_local_main_process
|
| 765 |
+
)
|
| 766 |
+
progress_bar.set_description("Steps")
|
| 767 |
+
global_step = 0
|
| 768 |
+
last_save = 0
|
| 769 |
+
|
| 770 |
+
for epoch in range(args.num_train_epochs):
|
| 771 |
+
unet.train()
|
| 772 |
+
if args.train_text_encoder:
|
| 773 |
+
text_encoder.train()
|
| 774 |
+
|
| 775 |
+
for step, batch in enumerate(train_dataloader):
|
| 776 |
+
# Convert images to latent space
|
| 777 |
+
latents = vae.encode(
|
| 778 |
+
batch["pixel_values"].to(dtype=weight_dtype)
|
| 779 |
+
).latent_dist.sample()
|
| 780 |
+
latents = latents * 0.18215
|
| 781 |
+
|
| 782 |
+
# Sample noise that we'll add to the latents
|
| 783 |
+
noise = torch.randn_like(latents)
|
| 784 |
+
bsz = latents.shape[0]
|
| 785 |
+
# Sample a random timestep for each image
|
| 786 |
+
timesteps = torch.randint(
|
| 787 |
+
0,
|
| 788 |
+
noise_scheduler.config.num_train_timesteps,
|
| 789 |
+
(bsz,),
|
| 790 |
+
device=latents.device,
|
| 791 |
+
)
|
| 792 |
+
timesteps = timesteps.long()
|
| 793 |
+
|
| 794 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
| 795 |
+
# (this is the forward diffusion process)
|
| 796 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
| 797 |
+
|
| 798 |
+
# Get the text embedding for conditioning
|
| 799 |
+
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
| 800 |
+
|
| 801 |
+
# Predict the noise residual
|
| 802 |
+
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
| 803 |
+
|
| 804 |
+
# Get the target for loss depending on the prediction type
|
| 805 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
| 806 |
+
target = noise
|
| 807 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
| 808 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
| 809 |
+
else:
|
| 810 |
+
raise ValueError(
|
| 811 |
+
f"Unknown prediction type {noise_scheduler.config.prediction_type}"
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
+
if args.with_prior_preservation:
|
| 815 |
+
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
|
| 816 |
+
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
|
| 817 |
+
target, target_prior = torch.chunk(target, 2, dim=0)
|
| 818 |
+
|
| 819 |
+
# Compute instance loss
|
| 820 |
+
loss = (
|
| 821 |
+
F.mse_loss(model_pred.float(), target.float(), reduction="none")
|
| 822 |
+
.mean([1, 2, 3])
|
| 823 |
+
.mean()
|
| 824 |
+
)
|
| 825 |
+
|
| 826 |
+
# Compute prior loss
|
| 827 |
+
prior_loss = F.mse_loss(
|
| 828 |
+
model_pred_prior.float(), target_prior.float(), reduction="mean"
|
| 829 |
+
)
|
| 830 |
+
|
| 831 |
+
# Add the prior loss to the instance loss.
|
| 832 |
+
loss = loss + args.prior_loss_weight * prior_loss
|
| 833 |
+
else:
|
| 834 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
| 835 |
+
|
| 836 |
+
accelerator.backward(loss)
|
| 837 |
+
if accelerator.sync_gradients:
|
| 838 |
+
params_to_clip = (
|
| 839 |
+
itertools.chain(unet.parameters(), text_encoder.parameters())
|
| 840 |
+
if args.train_text_encoder
|
| 841 |
+
else unet.parameters()
|
| 842 |
+
)
|
| 843 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
| 844 |
+
optimizer.step()
|
| 845 |
+
lr_scheduler.step()
|
| 846 |
+
progress_bar.update(1)
|
| 847 |
+
optimizer.zero_grad()
|
| 848 |
+
|
| 849 |
+
global_step += 1
|
| 850 |
+
|
| 851 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
| 852 |
+
if accelerator.sync_gradients:
|
| 853 |
+
if args.save_steps and global_step - last_save >= args.save_steps:
|
| 854 |
+
if accelerator.is_main_process:
|
| 855 |
+
# newer versions of accelerate allow the 'keep_fp32_wrapper' arg. without passing
|
| 856 |
+
# it, the models will be unwrapped, and when they are then used for further training,
|
| 857 |
+
# we will crash. pass this, but only to newer versions of accelerate. fixes
|
| 858 |
+
# https://github.com/huggingface/diffusers/issues/1566
|
| 859 |
+
accepts_keep_fp32_wrapper = "keep_fp32_wrapper" in set(
|
| 860 |
+
inspect.signature(
|
| 861 |
+
accelerator.unwrap_model
|
| 862 |
+
).parameters.keys()
|
| 863 |
+
)
|
| 864 |
+
extra_args = (
|
| 865 |
+
{"keep_fp32_wrapper": True}
|
| 866 |
+
if accepts_keep_fp32_wrapper
|
| 867 |
+
else {}
|
| 868 |
+
)
|
| 869 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
| 870 |
+
args.pretrained_model_name_or_path,
|
| 871 |
+
unet=accelerator.unwrap_model(unet, **extra_args),
|
| 872 |
+
text_encoder=accelerator.unwrap_model(
|
| 873 |
+
text_encoder, **extra_args
|
| 874 |
+
),
|
| 875 |
+
revision=args.revision,
|
| 876 |
+
)
|
| 877 |
+
|
| 878 |
+
filename_unet = (
|
| 879 |
+
f"{args.output_dir}/lora_weight_e{epoch}_s{global_step}.pt"
|
| 880 |
+
)
|
| 881 |
+
filename_text_encoder = f"{args.output_dir}/lora_weight_e{epoch}_s{global_step}.text_encoder.pt"
|
| 882 |
+
print(f"save weights {filename_unet}, {filename_text_encoder}")
|
| 883 |
+
save_lora_weight(pipeline.unet, filename_unet)
|
| 884 |
+
if args.train_text_encoder:
|
| 885 |
+
save_lora_weight(
|
| 886 |
+
pipeline.text_encoder,
|
| 887 |
+
filename_text_encoder,
|
| 888 |
+
target_replace_module=["CLIPAttention"],
|
| 889 |
+
)
|
| 890 |
+
|
| 891 |
+
for _up, _down in extract_lora_ups_down(pipeline.unet):
|
| 892 |
+
print(
|
| 893 |
+
"First Unet Layer's Up Weight is now : ",
|
| 894 |
+
_up.weight.data,
|
| 895 |
+
)
|
| 896 |
+
print(
|
| 897 |
+
"First Unet Layer's Down Weight is now : ",
|
| 898 |
+
_down.weight.data,
|
| 899 |
+
)
|
| 900 |
+
break
|
| 901 |
+
if args.train_text_encoder:
|
| 902 |
+
for _up, _down in extract_lora_ups_down(
|
| 903 |
+
pipeline.text_encoder,
|
| 904 |
+
target_replace_module=["CLIPAttention"],
|
| 905 |
+
):
|
| 906 |
+
print(
|
| 907 |
+
"First Text Encoder Layer's Up Weight is now : ",
|
| 908 |
+
_up.weight.data,
|
| 909 |
+
)
|
| 910 |
+
print(
|
| 911 |
+
"First Text Encoder Layer's Down Weight is now : ",
|
| 912 |
+
_down.weight.data,
|
| 913 |
+
)
|
| 914 |
+
break
|
| 915 |
+
|
| 916 |
+
last_save = global_step
|
| 917 |
+
|
| 918 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
| 919 |
+
progress_bar.set_postfix(**logs)
|
| 920 |
+
accelerator.log(logs, step=global_step)
|
| 921 |
+
|
| 922 |
+
if global_step >= args.max_train_steps:
|
| 923 |
+
break
|
| 924 |
+
|
| 925 |
+
accelerator.wait_for_everyone()
|
| 926 |
+
|
| 927 |
+
# Create the pipeline using using the trained modules and save it.
|
| 928 |
+
if accelerator.is_main_process:
|
| 929 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
| 930 |
+
args.pretrained_model_name_or_path,
|
| 931 |
+
unet=accelerator.unwrap_model(unet),
|
| 932 |
+
text_encoder=accelerator.unwrap_model(text_encoder),
|
| 933 |
+
revision=args.revision,
|
| 934 |
+
)
|
| 935 |
+
|
| 936 |
+
print("\n\nLora TRAINING DONE!\n\n")
|
| 937 |
+
|
| 938 |
+
save_lora_weight(pipeline.unet, args.output_dir + "/lora_weight.pt")
|
| 939 |
+
if args.train_text_encoder:
|
| 940 |
+
save_lora_weight(
|
| 941 |
+
pipeline.text_encoder,
|
| 942 |
+
args.output_dir + "/lora_weight.text_encoder.pt",
|
| 943 |
+
target_replace_module=["CLIPAttention"],
|
| 944 |
+
)
|
| 945 |
+
|
| 946 |
+
if args.push_to_hub:
|
| 947 |
+
repo.push_to_hub(
|
| 948 |
+
commit_message="End of training", blocking=False, auto_lfs_prune=True
|
| 949 |
+
)
|
| 950 |
+
|
| 951 |
+
accelerator.end_training()
|
| 952 |
+
|
| 953 |
+
|
| 954 |
+
if __name__ == "__main__":
|
| 955 |
+
args = parse_args()
|
| 956 |
+
main(args)
|