Spaces:
Running
on
Zero
Running
on
Zero
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional | |
import torch | |
from einops import rearrange, repeat | |
from torch import nn | |
import math | |
def normalize(x: torch.Tensor, dim: Optional[List[int]] = None, eps: float = 0) -> torch.Tensor: | |
""" | |
Normalizes the input tensor along specified dimensions such that the average square norm of elements is adjusted. | |
Args: | |
x (torch.Tensor): The input tensor to normalize. | |
dim (list, optional): The dimensions over which to normalize. If None, normalizes over all dimensions except the first. | |
eps (float, optional): A small constant to ensure numerical stability during division. | |
Returns: | |
torch.Tensor: The normalized tensor. | |
""" | |
if dim is None: | |
dim = list(range(1, x.ndim)) | |
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32) | |
norm = torch.add(eps, norm, alpha=math.sqrt(norm.numel() / x.numel())) | |
return x / norm.to(x.dtype) | |
class VideoPositionEmb(nn.Module): | |
def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor], device=None, dtype=None) -> torch.Tensor: | |
""" | |
It delegates the embedding generation to generate_embeddings function. | |
""" | |
B_T_H_W_C = x_B_T_H_W_C.shape | |
embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps, device=device, dtype=dtype) | |
return embeddings | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor], device=None): | |
raise NotImplementedError | |
class VideoRopePosition3DEmb(VideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
head_dim: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
base_fps: int = 24, | |
h_extrapolation_ratio: float = 1.0, | |
w_extrapolation_ratio: float = 1.0, | |
t_extrapolation_ratio: float = 1.0, | |
device=None, | |
**kwargs, # used for compatibility with other positional embeddings; unused in this class | |
): | |
del kwargs | |
super().__init__() | |
self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float, device=device)) | |
self.base_fps = base_fps | |
self.max_h = len_h | |
self.max_w = len_w | |
dim = head_dim | |
dim_h = dim // 6 * 2 | |
dim_w = dim_h | |
dim_t = dim - 2 * dim_h | |
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}" | |
self.register_buffer( | |
"dim_spatial_range", | |
torch.arange(0, dim_h, 2, device=device)[: (dim_h // 2)].float() / dim_h, | |
persistent=False, | |
) | |
self.register_buffer( | |
"dim_temporal_range", | |
torch.arange(0, dim_t, 2, device=device)[: (dim_t // 2)].float() / dim_t, | |
persistent=False, | |
) | |
self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2)) | |
self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2)) | |
self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2)) | |
def generate_embeddings( | |
self, | |
B_T_H_W_C: torch.Size, | |
fps: Optional[torch.Tensor] = None, | |
h_ntk_factor: Optional[float] = None, | |
w_ntk_factor: Optional[float] = None, | |
t_ntk_factor: Optional[float] = None, | |
device=None, | |
dtype=None, | |
): | |
""" | |
Generate embeddings for the given input size. | |
Args: | |
B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels). | |
fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None. | |
h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. | |
w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. | |
t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. | |
Returns: | |
Not specified in the original code snippet. | |
""" | |
h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor | |
w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor | |
t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor | |
h_theta = 10000.0 * h_ntk_factor | |
w_theta = 10000.0 * w_ntk_factor | |
t_theta = 10000.0 * t_ntk_factor | |
h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range.to(device=device)) | |
w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range.to(device=device)) | |
temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range.to(device=device)) | |
B, T, H, W, _ = B_T_H_W_C | |
uniform_fps = (fps is None) or isinstance(fps, (int, float)) or (fps.min() == fps.max()) | |
assert ( | |
uniform_fps or B == 1 or T == 1 | |
), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1" | |
assert ( | |
H <= self.max_h and W <= self.max_w | |
), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w})" | |
half_emb_h = torch.outer(self.seq[:H].to(device=device), h_spatial_freqs) | |
half_emb_w = torch.outer(self.seq[:W].to(device=device), w_spatial_freqs) | |
# apply sequence scaling in temporal dimension | |
if fps is None: # image case | |
half_emb_t = torch.outer(self.seq[:T].to(device=device), temporal_freqs) | |
else: | |
half_emb_t = torch.outer(self.seq[:T].to(device=device) / fps * self.base_fps, temporal_freqs) | |
half_emb_h = torch.stack([torch.cos(half_emb_h), -torch.sin(half_emb_h), torch.sin(half_emb_h), torch.cos(half_emb_h)], dim=-1) | |
half_emb_w = torch.stack([torch.cos(half_emb_w), -torch.sin(half_emb_w), torch.sin(half_emb_w), torch.cos(half_emb_w)], dim=-1) | |
half_emb_t = torch.stack([torch.cos(half_emb_t), -torch.sin(half_emb_t), torch.sin(half_emb_t), torch.cos(half_emb_t)], dim=-1) | |
em_T_H_W_D = torch.cat( | |
[ | |
repeat(half_emb_t, "t d x -> t h w d x", h=H, w=W), | |
repeat(half_emb_h, "h d x -> t h w d x", t=T, w=W), | |
repeat(half_emb_w, "w d x -> t h w d x", t=T, h=H), | |
] | |
, dim=-2, | |
) | |
return rearrange(em_T_H_W_D, "t h w d (i j) -> (t h w) d i j", i=2, j=2).float() | |
class LearnablePosEmbAxis(VideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
interpolation: str, | |
model_channels: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
device=None, | |
dtype=None, | |
**kwargs, | |
): | |
""" | |
Args: | |
interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet. | |
""" | |
del kwargs # unused | |
super().__init__() | |
self.interpolation = interpolation | |
assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}" | |
self.pos_emb_h = nn.Parameter(torch.empty(len_h, model_channels, device=device, dtype=dtype)) | |
self.pos_emb_w = nn.Parameter(torch.empty(len_w, model_channels, device=device, dtype=dtype)) | |
self.pos_emb_t = nn.Parameter(torch.empty(len_t, model_channels, device=device, dtype=dtype)) | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor], device=None, dtype=None) -> torch.Tensor: | |
B, T, H, W, _ = B_T_H_W_C | |
if self.interpolation == "crop": | |
emb_h_H = self.pos_emb_h[:H].to(device=device, dtype=dtype) | |
emb_w_W = self.pos_emb_w[:W].to(device=device, dtype=dtype) | |
emb_t_T = self.pos_emb_t[:T].to(device=device, dtype=dtype) | |
emb = ( | |
repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W) | |
+ repeat(emb_h_H, "h d-> b t h w d", b=B, t=T, w=W) | |
+ repeat(emb_w_W, "w d-> b t h w d", b=B, t=T, h=H) | |
) | |
assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}" | |
else: | |
raise ValueError(f"Unknown interpolation method {self.interpolation}") | |
return normalize(emb, dim=-1, eps=1e-6) | |