File size: 9,232 Bytes
6fd97c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional

import torch
from einops import rearrange, repeat
from torch import nn
import math


def normalize(x: torch.Tensor, dim: Optional[List[int]] = None, eps: float = 0) -> torch.Tensor:
    """

    Normalizes the input tensor along specified dimensions such that the average square norm of elements is adjusted.



    Args:

        x (torch.Tensor): The input tensor to normalize.

        dim (list, optional): The dimensions over which to normalize. If None, normalizes over all dimensions except the first.

        eps (float, optional): A small constant to ensure numerical stability during division.



    Returns:

        torch.Tensor: The normalized tensor.

    """
    if dim is None:
        dim = list(range(1, x.ndim))
    norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
    norm = torch.add(eps, norm, alpha=math.sqrt(norm.numel() / x.numel()))
    return x / norm.to(x.dtype)


class VideoPositionEmb(nn.Module):
    def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor], device=None, dtype=None) -> torch.Tensor:
        """

        It delegates the embedding generation to generate_embeddings function.

        """
        B_T_H_W_C = x_B_T_H_W_C.shape
        embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps, device=device, dtype=dtype)

        return embeddings

    def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor], device=None):
        raise NotImplementedError


class VideoRopePosition3DEmb(VideoPositionEmb):
    def __init__(

        self,

        *,  # enforce keyword arguments

        head_dim: int,

        len_h: int,

        len_w: int,

        len_t: int,

        base_fps: int = 24,

        h_extrapolation_ratio: float = 1.0,

        w_extrapolation_ratio: float = 1.0,

        t_extrapolation_ratio: float = 1.0,

        device=None,

        **kwargs,  # used for compatibility with other positional embeddings; unused in this class

    ):
        del kwargs
        super().__init__()
        self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float, device=device))
        self.base_fps = base_fps
        self.max_h = len_h
        self.max_w = len_w

        dim = head_dim
        dim_h = dim // 6 * 2
        dim_w = dim_h
        dim_t = dim - 2 * dim_h
        assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}"
        self.register_buffer(
            "dim_spatial_range",
            torch.arange(0, dim_h, 2, device=device)[: (dim_h // 2)].float() / dim_h,
            persistent=False,
        )
        self.register_buffer(
            "dim_temporal_range",
            torch.arange(0, dim_t, 2, device=device)[: (dim_t // 2)].float() / dim_t,
            persistent=False,
        )

        self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2))
        self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2))
        self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2))

    def generate_embeddings(

        self,

        B_T_H_W_C: torch.Size,

        fps: Optional[torch.Tensor] = None,

        h_ntk_factor: Optional[float] = None,

        w_ntk_factor: Optional[float] = None,

        t_ntk_factor: Optional[float] = None,

        device=None,

        dtype=None,

    ):
        """

        Generate embeddings for the given input size.



        Args:

            B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels).

            fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None.

            h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor.

            w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor.

            t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor.



        Returns:

            Not specified in the original code snippet.

        """
        h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor
        w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor
        t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor

        h_theta = 10000.0 * h_ntk_factor
        w_theta = 10000.0 * w_ntk_factor
        t_theta = 10000.0 * t_ntk_factor

        h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range.to(device=device))
        w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range.to(device=device))
        temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range.to(device=device))

        B, T, H, W, _ = B_T_H_W_C
        uniform_fps = (fps is None) or isinstance(fps, (int, float)) or (fps.min() == fps.max())
        assert (
            uniform_fps or B == 1 or T == 1
        ), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1"
        assert (
            H <= self.max_h and W <= self.max_w
        ), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w})"
        half_emb_h = torch.outer(self.seq[:H].to(device=device), h_spatial_freqs)
        half_emb_w = torch.outer(self.seq[:W].to(device=device), w_spatial_freqs)

        # apply sequence scaling in temporal dimension
        if fps is None:  # image case
            half_emb_t = torch.outer(self.seq[:T].to(device=device), temporal_freqs)
        else:
            half_emb_t = torch.outer(self.seq[:T].to(device=device) / fps * self.base_fps, temporal_freqs)

        half_emb_h = torch.stack([torch.cos(half_emb_h), -torch.sin(half_emb_h), torch.sin(half_emb_h), torch.cos(half_emb_h)], dim=-1)
        half_emb_w = torch.stack([torch.cos(half_emb_w), -torch.sin(half_emb_w), torch.sin(half_emb_w), torch.cos(half_emb_w)], dim=-1)
        half_emb_t = torch.stack([torch.cos(half_emb_t), -torch.sin(half_emb_t), torch.sin(half_emb_t), torch.cos(half_emb_t)], dim=-1)

        em_T_H_W_D = torch.cat(
            [
                repeat(half_emb_t, "t d x -> t h w d x", h=H, w=W),
                repeat(half_emb_h, "h d x -> t h w d x", t=T, w=W),
                repeat(half_emb_w, "w d x -> t h w d x", t=T, h=H),
            ]
            , dim=-2,
        )

        return rearrange(em_T_H_W_D, "t h w d (i j) -> (t h w) d i j", i=2, j=2).float()


class LearnablePosEmbAxis(VideoPositionEmb):
    def __init__(

        self,

        *,  # enforce keyword arguments

        interpolation: str,

        model_channels: int,

        len_h: int,

        len_w: int,

        len_t: int,

        device=None,

        dtype=None,

        **kwargs,

    ):
        """

        Args:

            interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet.

        """
        del kwargs  # unused
        super().__init__()
        self.interpolation = interpolation
        assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}"

        self.pos_emb_h = nn.Parameter(torch.empty(len_h, model_channels, device=device, dtype=dtype))
        self.pos_emb_w = nn.Parameter(torch.empty(len_w, model_channels, device=device, dtype=dtype))
        self.pos_emb_t = nn.Parameter(torch.empty(len_t, model_channels, device=device, dtype=dtype))

    def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor], device=None, dtype=None) -> torch.Tensor:
        B, T, H, W, _ = B_T_H_W_C
        if self.interpolation == "crop":
            emb_h_H = self.pos_emb_h[:H].to(device=device, dtype=dtype)
            emb_w_W = self.pos_emb_w[:W].to(device=device, dtype=dtype)
            emb_t_T = self.pos_emb_t[:T].to(device=device, dtype=dtype)
            emb = (
                repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W)
                + repeat(emb_h_H, "h d-> b t h w d", b=B, t=T, w=W)
                + repeat(emb_w_W, "w d-> b t h w d", b=B, t=T, h=H)
            )
            assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}"
        else:
            raise ValueError(f"Unknown interpolation method {self.interpolation}")

        return normalize(emb, dim=-1, eps=1e-6)