VibeVoice / modular /modeling_vibevoice.py
yasserrmd's picture
Upload folder using huggingface_hub
20a29ac verified
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union, Callable
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from transformers.models.auto import AutoModel, AutoModelForCausalLM
from transformers.activations import ACT2FN
from transformers.modeling_outputs import CausalLMOutput, BaseModelOutputWithPast, ModelOutput
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers import modeling_utils
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.utils import logging
from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceAcousticTokenizerModel, VibeVoiceSemanticTokenizerModel
from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead
from vibevoice.schedule.dpm_solver import DPMSolverMultistepScheduler
from .configuration_vibevoice import VibeVoiceConfig
logger = logging.get_logger(__name__)
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"]
@dataclass
class VibeVoiceCausalLMOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
diffusion_loss: Optional[torch.FloatTensor] = None
speech_token_num: Optional[int] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class VibeVoiceGenerationOutput(ModelOutput):
"""
Output type for VibeVoice generation.
Args:
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The generated sequences.
speech_outputs (`List[torch.FloatTensor]`, *optional*):
List of generated speech waveforms or latents for each speech segment.
"""
sequences: torch.LongTensor = None
speech_outputs: Optional[List[torch.FloatTensor]] = None
class SpeechConnector(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.fc1 = nn.Linear(input_dim, output_dim)
self.norm = LlamaRMSNorm(output_dim, eps=1e-6)
self.fc2 = nn.Linear(output_dim, output_dim)
def forward(self, features, **kwargs):
x = self.fc1(features)
x = self.norm(x)
x = self.fc2(x)
return x
# @auto_docstring
class VibeVoicePreTrainedModel(PreTrainedModel):
config_class = VibeVoiceConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
_supports_cache_class = True
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
if isinstance(module, VibeVoiceDiffusionHead):
module.initialize_weights()
return
# Use the language model's initializer_range if available
if hasattr(self.config, 'language_model_config') and hasattr(self.config.language_model_config, 'initializer_range'):
std = self.config.language_model_config.initializer_range
elif hasattr(self.config, 'decoder_config') and hasattr(self.config.decoder_config, 'initializer_range'):
std = self.config.decoder_config.initializer_range
else:
std = 0.02 # Default value
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
# @auto_docstring
class VibeVoiceModel(VibeVoicePreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, 'torch_dtype') and config.torch_dtype is not None:
if isinstance(config.torch_dtype, str):
dtype = getattr(torch, config.torch_dtype)
else:
dtype = config.torch_dtype
else:
dtype = torch.float32
# Initialize Qwen2 model for language modeling
lm_config = config.decoder_config
self.language_model = AutoModel.from_config(lm_config)
# Initialize speech components if needed
self.acoustic_tokenizer = AutoModel.from_config(config.acoustic_tokenizer_config).to(dtype)
self.semantic_tokenizer = AutoModel.from_config(config.semantic_tokenizer_config).to(dtype)
self.acoustic_connector = SpeechConnector(config.acoustic_vae_dim, lm_config.hidden_size).to(dtype)
self.semantic_connector = SpeechConnector(config.semantic_vae_dim, lm_config.hidden_size).to(dtype)
# Register scaling factors as buffers - use 1D tensors for FSDP compatibility
self.register_buffer('speech_scaling_factor', torch.tensor(float('nan')))
self.register_buffer('speech_bias_factor', torch.tensor(float('nan')))
# Initialize prediction head for speech generation
self.prediction_head = AutoModel.from_config(config.diffusion_head_config).to(dtype)
# Initialize noise scheduler
self.noise_scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=config.diffusion_head_config.ddpm_num_steps,
beta_schedule=config.diffusion_head_config.ddpm_beta_schedule,
prediction_type=config.diffusion_head_config.prediction_type
)
def get_input_embeddings(self):
if hasattr(self.language_model, 'embed_tokens'):
# If the language model has an embed_tokens attribute, return it
return self.language_model.embed_tokens
for name, attr in self.language_model.fullmap.items(): # parallel by nnscaler, the name is changed
if attr.orig_name == 'embed_tokens.weight':
return getattr(self.language_model, name)
assert False, 'should not arrive here'
def set_input_embeddings(self, value):
self.language_model.embed_tokens = value
def set_speech_tokenizers(self, acoustic_tokenizer=None, semantic_tokenizer=None):
"""Set the speech tokenizers used for encoding and decoding speech."""
self.acoustic_tokenizer = acoustic_tokenizer
self.semantic_tokenizer = semantic_tokenizer
# Reset the encoder to evaluation mode
if self.acoustic_tokenizer is not None:
self.acoustic_tokenizer.eval()
if self.semantic_tokenizer is not None:
self.semantic_tokenizer.eval()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple, BaseModelOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Forward through language model
outputs = self.language_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
if not return_dict:
return outputs
return BaseModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class VibeVoiceForConditionalGeneration(VibeVoicePreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
def __init__(self, config):
super().__init__(config)
self.model = VibeVoiceModel(config)
self.vocab_size = config.decoder_config.vocab_size
self.lm_head = nn.Linear(config.decoder_config.hidden_size, self.vocab_size, bias=False)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.lm_head
def set_decoder(self, decoder):
self.model.language_model = decoder
def get_decoder(self):
return self.model.language_model
def tie_weights(self):
"""
Tie the weights between the input embeddings and the output embeddings.
"""
if getattr(self.config.decoder_config, 'tie_word_embeddings', False):
# The standard PreTrainedModel method will handle the tying.
# It typically does a simple parameter object assignment, which is
# CORRECT to do BEFORE FSDP wraps the model.
output_embeddings = self.get_output_embeddings()
input_embeddings = self.get_input_embeddings()
if hasattr(input_embeddings, 'weight'):
output_embeddings.weight = input_embeddings.weight
else:
# maybe returned input_embeddings a tensor directly
output_embeddings.weight = input_embeddings
if getattr(output_embeddings, "bias", None) is not None:
output_embeddings.bias.data = nn.functional.pad(
output_embeddings.bias.data,
(0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0]),
"constant",
0,
)
print("✅ Tied input and output embeddings using standard assignment.")
else:
print("ℹ️ tie_word_embeddings is False, not tying weights.")
# Also, ensure set_output_embeddings is safe, though your implementation looks okay.
# The key is to avoid calling it after accelerator.prepare().
def set_output_embeddings(self, new_embeddings):
# Your current implementation using data.copy_ is good practice,
# but the best way is to not call this after prepare().
self.lm_head = new_embeddings
def forward_speech_features(
self,
speech_tensors=None,
speech_masks=None,
speech_type="audio",
return_unmask=False
):
if speech_tensors is None:
# Use config to get vae_dim instead of non-existent self.args
vae_dim = self.config.acoustic_tokenizer_config.vae_dim
audio_features = torch.zeros(1, 1, vae_dim).to(self.get_input_embeddings().weight)
connect_features = self.model.acoustic_connector(audio_features)
return audio_features, connect_features
else:
with torch.no_grad():
if speech_type == "audio":
with torch.no_grad():
frames = self.model.acoustic_tokenizer.encode(speech_tensors.unsqueeze(1))[0][0]
audio_tokens = frames.sample(self.model.acoustic_tokenizer.std_dist_type)[0]
elif speech_type == "vae":
# Use config to get vae_dim instead of non-existent self.args
vae_dim = self.config.acoustic_tokenizer_config.vae_dim
speech_mode = speech_tensors.reshape(speech_tensors.size(0), -1, vae_dim)
# gaussian sample from the speech_mode
batch_size = speech_mode.size(0)
value = self.model.acoustic_tokenizer.fix_std / 0.8
std = torch.randn(batch_size, dtype=speech_mode.dtype, device=speech_mode.device) * value
std = std.view(-1, *[1] * (speech_mode.dim() - 1))
audio_tokens = speech_mode + std * torch.randn(speech_mode.shape).to(speech_mode)
else:
raise NotImplementedError(f"Speech type {speech_type} not implemented")
if torch.isnan(self.model.speech_scaling_factor) or torch.isnan(self.model.speech_bias_factor):
scaling_factor = 1. / audio_tokens[speech_masks].flatten().std()
bias_factor = -audio_tokens[speech_masks].flatten().mean()
# Only use distributed operations if the process group is initialized
if dist.is_available() and dist.is_initialized():
dist.all_reduce(scaling_factor, op=dist.ReduceOp.SUM)
dist.all_reduce(bias_factor, op=dist.ReduceOp.SUM)
world_size = dist.get_world_size()
self.model.speech_scaling_factor.copy_(scaling_factor / world_size)
self.model.speech_bias_factor.copy_(bias_factor / world_size)
print(f"Speech scaling factor (distributed): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True)
else:
# Single process case
self.model.speech_scaling_factor.copy_(scaling_factor)
self.model.speech_bias_factor.copy_(bias_factor)
print(f"Speech scaling factor (single process): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True)
audio_features = (audio_tokens + self.model.speech_bias_factor) * self.model.speech_scaling_factor
connect_features = self.model.acoustic_connector(audio_features)
if return_unmask:
return audio_features, connect_features
return audio_features[speech_masks], connect_features[speech_masks]
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
# New arguments for speech processing and loss calculation
speech_tensors: Optional[torch.FloatTensor] = None,
speech_masks: Optional[torch.BoolTensor] = None,
speeches_loss_input: Optional[torch.FloatTensor] = None,
speech_semantic_tensors: Optional[torch.FloatTensor] = None,
acoustic_input_mask: Optional[torch.BoolTensor] = None,
acoustic_loss_mask: Optional[torch.BoolTensor] = None,
ddpm_batch_mul: int = 1,
**kwargs: Optional[Dict[str, Union[torch.Tensor, str]]],
) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
x = self.get_input_embeddings()(input_ids)
semantic_speech_all_connect_features = self.model.semantic_connector(speech_semantic_tensors)
if speeches_loss_input is not None:
# only part audio need diffuse
speech_all_features, speech_all_connect_features = self.forward_speech_features(
speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None,
speech_masks=speech_masks,
speech_type=kwargs.get("speech_type", "audio"),
return_unmask=True
)
if speech_tensors is not None:
if semantic_speech_all_connect_features is not None:
x[acoustic_input_mask] = speech_all_connect_features[speech_masks] + semantic_speech_all_connect_features[speech_masks]
else:
x[acoustic_input_mask] = speech_all_connect_features[speech_masks]
speech_features = speech_all_features[speeches_loss_input.unsqueeze(-1) & speech_masks] # only part audio need diffuse
speech_connect_features = speech_all_connect_features[speeches_loss_input.unsqueeze(-1) & speech_masks]
else:
speech_features, speech_connect_features = self.forward_speech_features(
speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None,
speech_masks=speech_masks,
speech_type=kwargs.get("speech_type", "audio"),
)
if speech_tensors is not None:
x[acoustic_input_mask] = speech_connect_features
outputs = self.model(
input_ids=None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=x,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=False,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs.last_hidden_state
logits = self.lm_head(hidden_states)
# logits = logits.float()
loss = None
if labels is not None:
# The custom CE loss with masking is calculated in the training script.
# We leave the standard loss calculation here as None.
pass
# --- Diffusion Loss Calculation ---
diffusion_loss = None
# This block is executed only if we are in a context that involves speech.
if speech_tensors is not None and acoustic_loss_mask.sum().item() > 0:
condition_features = hidden_states[acoustic_loss_mask]
speech_len, latent_size = speech_features.shape
noise = torch.randn(
(speech_len * ddpm_batch_mul, latent_size),
device=hidden_states.device,
dtype=hidden_states.dtype
)
timesteps = torch.multinomial(
torch.ones(self.config.diffusion_head_config.ddpm_num_steps),
speech_len * ddpm_batch_mul,
replacement=True,
).to(hidden_states.device)
speech_features_repeated = speech_features.repeat_interleave(ddpm_batch_mul, dim=0)
condition_features_repeated = condition_features.repeat_interleave(ddpm_batch_mul, dim=0)
noisy_speech_features = self.model.noise_scheduler.add_noise(
speech_features_repeated, noise, timesteps
)
model_output = self.model.prediction_head(
noisy_speech_features,
timesteps.type_as(x),
condition_features_repeated
)
prediction_type = self.config.diffusion_head_config.prediction_type
if prediction_type == "epsilon":
target_for_loss = noise
elif prediction_type == "v_prediction":
target_for_loss = self.model.noise_scheduler.get_velocity(
speech_features_repeated, noise, timesteps
)
else:
raise NotImplementedError(f"Prediction type {prediction_type} not implemented")
diffusion_loss = F.mse_loss(model_output.float(), target_for_loss.float(), reduction='sum')
if latent_size > 0 and ddpm_batch_mul > 0:
diffusion_loss = diffusion_loss / latent_size / ddpm_batch_mul
else:
diffusion_loss = torch.tensor(0.0, device=diffusion_loss.device)
else:
# Dummy loss for DDP to work when there are no speech samples in a batch,
# but we are in a speech context.
diffusion_loss = sum(p.sum() for p in self.model.prediction_head.parameters()) * 0.0
diffusion_loss += sum(p.sum() for p in self.model.acoustic_connector.parameters()) * 0.0
diffusion_loss += sum(p.sum() for p in self.model.semantic_connector.parameters()) * 0.0
# --- End Diffusion Loss Calculation ---
if not return_dict:
output = (logits, speech_len) + outputs.to_tuple()[1:]
return (loss, diffusion_loss) + output
return VibeVoiceCausalLMOutputWithPast(
loss=loss,
diffusion_loss=diffusion_loss,
speech_token_num=speech_len if speech_tensors is not None else 0,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
AutoModel.register(VibeVoiceConfig, VibeVoiceModel)
AutoModelForCausalLM.register(VibeVoiceConfig, VibeVoiceForConditionalGeneration)
__all__ = [
"VibeVoiceModel",
"VibeVoicePreTrainedModel",
"VibeVoiceForConditionalGeneration",
"VibeVoiceCausalLMOutputWithPast",
"VibeVoiceGenerationOutput",
]