Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
from typing import Dict, List, Optional, Tuple, Union, Callable | |
from tqdm import tqdm | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.distributed as dist | |
from transformers.models.auto import AutoModel, AutoModelForCausalLM | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import CausalLMOutput, BaseModelOutputWithPast, ModelOutput | |
from transformers.models.llama.modeling_llama import LlamaRMSNorm | |
from transformers import modeling_utils | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs | |
from transformers.utils import logging | |
from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceAcousticTokenizerModel, VibeVoiceSemanticTokenizerModel | |
from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead | |
from vibevoice.schedule.dpm_solver import DPMSolverMultistepScheduler | |
from .configuration_vibevoice import VibeVoiceConfig | |
logger = logging.get_logger(__name__) | |
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None: | |
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"] | |
class VibeVoiceCausalLMOutputWithPast(ModelOutput): | |
loss: Optional[torch.FloatTensor] = None | |
diffusion_loss: Optional[torch.FloatTensor] = None | |
speech_token_num: Optional[int] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class VibeVoiceGenerationOutput(ModelOutput): | |
""" | |
Output type for VibeVoice generation. | |
Args: | |
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
The generated sequences. | |
speech_outputs (`List[torch.FloatTensor]`, *optional*): | |
List of generated speech waveforms or latents for each speech segment. | |
""" | |
sequences: torch.LongTensor = None | |
speech_outputs: Optional[List[torch.FloatTensor]] = None | |
class SpeechConnector(nn.Module): | |
def __init__(self, input_dim, output_dim): | |
super().__init__() | |
self.fc1 = nn.Linear(input_dim, output_dim) | |
self.norm = LlamaRMSNorm(output_dim, eps=1e-6) | |
self.fc2 = nn.Linear(output_dim, output_dim) | |
def forward(self, features, **kwargs): | |
x = self.fc1(features) | |
x = self.norm(x) | |
x = self.fc2(x) | |
return x | |
# @auto_docstring | |
class VibeVoicePreTrainedModel(PreTrainedModel): | |
config_class = VibeVoiceConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_skip_keys_device_placement = "past_key_values" | |
_supports_cache_class = True | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_supports_quantized_cache = True | |
_supports_static_cache = True | |
_supports_attention_backend = True | |
def _init_weights(self, module): | |
if isinstance(module, VibeVoiceDiffusionHead): | |
module.initialize_weights() | |
return | |
# Use the language model's initializer_range if available | |
if hasattr(self.config, 'language_model_config') and hasattr(self.config.language_model_config, 'initializer_range'): | |
std = self.config.language_model_config.initializer_range | |
elif hasattr(self.config, 'decoder_config') and hasattr(self.config.decoder_config, 'initializer_range'): | |
std = self.config.decoder_config.initializer_range | |
else: | |
std = 0.02 # Default value | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.weight.data.fill_(1.0) | |
module.bias.data.zero_() | |
# @auto_docstring | |
class VibeVoiceModel(VibeVoicePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
if hasattr(config, 'torch_dtype') and config.torch_dtype is not None: | |
if isinstance(config.torch_dtype, str): | |
dtype = getattr(torch, config.torch_dtype) | |
else: | |
dtype = config.torch_dtype | |
else: | |
dtype = torch.float32 | |
# Initialize Qwen2 model for language modeling | |
lm_config = config.decoder_config | |
self.language_model = AutoModel.from_config(lm_config) | |
# Initialize speech components if needed | |
self.acoustic_tokenizer = AutoModel.from_config(config.acoustic_tokenizer_config).to(dtype) | |
self.semantic_tokenizer = AutoModel.from_config(config.semantic_tokenizer_config).to(dtype) | |
self.acoustic_connector = SpeechConnector(config.acoustic_vae_dim, lm_config.hidden_size).to(dtype) | |
self.semantic_connector = SpeechConnector(config.semantic_vae_dim, lm_config.hidden_size).to(dtype) | |
# Register scaling factors as buffers - use 1D tensors for FSDP compatibility | |
self.register_buffer('speech_scaling_factor', torch.tensor(float('nan'))) | |
self.register_buffer('speech_bias_factor', torch.tensor(float('nan'))) | |
# Initialize prediction head for speech generation | |
self.prediction_head = AutoModel.from_config(config.diffusion_head_config).to(dtype) | |
# Initialize noise scheduler | |
self.noise_scheduler = DPMSolverMultistepScheduler( | |
num_train_timesteps=config.diffusion_head_config.ddpm_num_steps, | |
beta_schedule=config.diffusion_head_config.ddpm_beta_schedule, | |
prediction_type=config.diffusion_head_config.prediction_type | |
) | |
def get_input_embeddings(self): | |
if hasattr(self.language_model, 'embed_tokens'): | |
# If the language model has an embed_tokens attribute, return it | |
return self.language_model.embed_tokens | |
for name, attr in self.language_model.fullmap.items(): # parallel by nnscaler, the name is changed | |
if attr.orig_name == 'embed_tokens.weight': | |
return getattr(self.language_model, name) | |
assert False, 'should not arrive here' | |
def set_input_embeddings(self, value): | |
self.language_model.embed_tokens = value | |
def set_speech_tokenizers(self, acoustic_tokenizer=None, semantic_tokenizer=None): | |
"""Set the speech tokenizers used for encoding and decoding speech.""" | |
self.acoustic_tokenizer = acoustic_tokenizer | |
self.semantic_tokenizer = semantic_tokenizer | |
# Reset the encoder to evaluation mode | |
if self.acoustic_tokenizer is not None: | |
self.acoustic_tokenizer.eval() | |
if self.semantic_tokenizer is not None: | |
self.semantic_tokenizer.eval() | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# Forward through language model | |
outputs = self.language_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
**kwargs, | |
) | |
if not return_dict: | |
return outputs | |
return BaseModelOutputWithPast( | |
last_hidden_state=outputs.last_hidden_state, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class VibeVoiceForConditionalGeneration(VibeVoicePreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
_tp_plan = {"lm_head": "colwise_rep"} | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = VibeVoiceModel(config) | |
self.vocab_size = config.decoder_config.vocab_size | |
self.lm_head = nn.Linear(config.decoder_config.hidden_size, self.vocab_size, bias=False) | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.get_input_embeddings() | |
def set_input_embeddings(self, value): | |
self.model.set_input_embeddings(value) | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_decoder(self, decoder): | |
self.model.language_model = decoder | |
def get_decoder(self): | |
return self.model.language_model | |
def tie_weights(self): | |
""" | |
Tie the weights between the input embeddings and the output embeddings. | |
""" | |
if getattr(self.config.decoder_config, 'tie_word_embeddings', False): | |
# The standard PreTrainedModel method will handle the tying. | |
# It typically does a simple parameter object assignment, which is | |
# CORRECT to do BEFORE FSDP wraps the model. | |
output_embeddings = self.get_output_embeddings() | |
input_embeddings = self.get_input_embeddings() | |
if hasattr(input_embeddings, 'weight'): | |
output_embeddings.weight = input_embeddings.weight | |
else: | |
# maybe returned input_embeddings a tensor directly | |
output_embeddings.weight = input_embeddings | |
if getattr(output_embeddings, "bias", None) is not None: | |
output_embeddings.bias.data = nn.functional.pad( | |
output_embeddings.bias.data, | |
(0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0]), | |
"constant", | |
0, | |
) | |
print("✅ Tied input and output embeddings using standard assignment.") | |
else: | |
print("ℹ️ tie_word_embeddings is False, not tying weights.") | |
# Also, ensure set_output_embeddings is safe, though your implementation looks okay. | |
# The key is to avoid calling it after accelerator.prepare(). | |
def set_output_embeddings(self, new_embeddings): | |
# Your current implementation using data.copy_ is good practice, | |
# but the best way is to not call this after prepare(). | |
self.lm_head = new_embeddings | |
def forward_speech_features( | |
self, | |
speech_tensors=None, | |
speech_masks=None, | |
speech_type="audio", | |
return_unmask=False | |
): | |
if speech_tensors is None: | |
# Use config to get vae_dim instead of non-existent self.args | |
vae_dim = self.config.acoustic_tokenizer_config.vae_dim | |
audio_features = torch.zeros(1, 1, vae_dim).to(self.get_input_embeddings().weight) | |
connect_features = self.model.acoustic_connector(audio_features) | |
return audio_features, connect_features | |
else: | |
with torch.no_grad(): | |
if speech_type == "audio": | |
with torch.no_grad(): | |
frames = self.model.acoustic_tokenizer.encode(speech_tensors.unsqueeze(1))[0][0] | |
audio_tokens = frames.sample(self.model.acoustic_tokenizer.std_dist_type)[0] | |
elif speech_type == "vae": | |
# Use config to get vae_dim instead of non-existent self.args | |
vae_dim = self.config.acoustic_tokenizer_config.vae_dim | |
speech_mode = speech_tensors.reshape(speech_tensors.size(0), -1, vae_dim) | |
# gaussian sample from the speech_mode | |
batch_size = speech_mode.size(0) | |
value = self.model.acoustic_tokenizer.fix_std / 0.8 | |
std = torch.randn(batch_size, dtype=speech_mode.dtype, device=speech_mode.device) * value | |
std = std.view(-1, *[1] * (speech_mode.dim() - 1)) | |
audio_tokens = speech_mode + std * torch.randn(speech_mode.shape).to(speech_mode) | |
else: | |
raise NotImplementedError(f"Speech type {speech_type} not implemented") | |
if torch.isnan(self.model.speech_scaling_factor) or torch.isnan(self.model.speech_bias_factor): | |
scaling_factor = 1. / audio_tokens[speech_masks].flatten().std() | |
bias_factor = -audio_tokens[speech_masks].flatten().mean() | |
# Only use distributed operations if the process group is initialized | |
if dist.is_available() and dist.is_initialized(): | |
dist.all_reduce(scaling_factor, op=dist.ReduceOp.SUM) | |
dist.all_reduce(bias_factor, op=dist.ReduceOp.SUM) | |
world_size = dist.get_world_size() | |
self.model.speech_scaling_factor.copy_(scaling_factor / world_size) | |
self.model.speech_bias_factor.copy_(bias_factor / world_size) | |
print(f"Speech scaling factor (distributed): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True) | |
else: | |
# Single process case | |
self.model.speech_scaling_factor.copy_(scaling_factor) | |
self.model.speech_bias_factor.copy_(bias_factor) | |
print(f"Speech scaling factor (single process): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True) | |
audio_features = (audio_tokens + self.model.speech_bias_factor) * self.model.speech_scaling_factor | |
connect_features = self.model.acoustic_connector(audio_features) | |
if return_unmask: | |
return audio_features, connect_features | |
return audio_features[speech_masks], connect_features[speech_masks] | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = False, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
# New arguments for speech processing and loss calculation | |
speech_tensors: Optional[torch.FloatTensor] = None, | |
speech_masks: Optional[torch.BoolTensor] = None, | |
speeches_loss_input: Optional[torch.FloatTensor] = None, | |
speech_semantic_tensors: Optional[torch.FloatTensor] = None, | |
acoustic_input_mask: Optional[torch.BoolTensor] = None, | |
acoustic_loss_mask: Optional[torch.BoolTensor] = None, | |
ddpm_batch_mul: int = 1, | |
**kwargs: Optional[Dict[str, Union[torch.Tensor, str]]], | |
) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]: | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
x = self.get_input_embeddings()(input_ids) | |
semantic_speech_all_connect_features = self.model.semantic_connector(speech_semantic_tensors) | |
if speeches_loss_input is not None: | |
# only part audio need diffuse | |
speech_all_features, speech_all_connect_features = self.forward_speech_features( | |
speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None, | |
speech_masks=speech_masks, | |
speech_type=kwargs.get("speech_type", "audio"), | |
return_unmask=True | |
) | |
if speech_tensors is not None: | |
if semantic_speech_all_connect_features is not None: | |
x[acoustic_input_mask] = speech_all_connect_features[speech_masks] + semantic_speech_all_connect_features[speech_masks] | |
else: | |
x[acoustic_input_mask] = speech_all_connect_features[speech_masks] | |
speech_features = speech_all_features[speeches_loss_input.unsqueeze(-1) & speech_masks] # only part audio need diffuse | |
speech_connect_features = speech_all_connect_features[speeches_loss_input.unsqueeze(-1) & speech_masks] | |
else: | |
speech_features, speech_connect_features = self.forward_speech_features( | |
speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None, | |
speech_masks=speech_masks, | |
speech_type=kwargs.get("speech_type", "audio"), | |
) | |
if speech_tensors is not None: | |
x[acoustic_input_mask] = speech_connect_features | |
outputs = self.model( | |
input_ids=None, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=x, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=False, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
hidden_states = outputs.last_hidden_state | |
logits = self.lm_head(hidden_states) | |
# logits = logits.float() | |
loss = None | |
if labels is not None: | |
# The custom CE loss with masking is calculated in the training script. | |
# We leave the standard loss calculation here as None. | |
pass | |
# --- Diffusion Loss Calculation --- | |
diffusion_loss = None | |
# This block is executed only if we are in a context that involves speech. | |
if speech_tensors is not None and acoustic_loss_mask.sum().item() > 0: | |
condition_features = hidden_states[acoustic_loss_mask] | |
speech_len, latent_size = speech_features.shape | |
noise = torch.randn( | |
(speech_len * ddpm_batch_mul, latent_size), | |
device=hidden_states.device, | |
dtype=hidden_states.dtype | |
) | |
timesteps = torch.multinomial( | |
torch.ones(self.config.diffusion_head_config.ddpm_num_steps), | |
speech_len * ddpm_batch_mul, | |
replacement=True, | |
).to(hidden_states.device) | |
speech_features_repeated = speech_features.repeat_interleave(ddpm_batch_mul, dim=0) | |
condition_features_repeated = condition_features.repeat_interleave(ddpm_batch_mul, dim=0) | |
noisy_speech_features = self.model.noise_scheduler.add_noise( | |
speech_features_repeated, noise, timesteps | |
) | |
model_output = self.model.prediction_head( | |
noisy_speech_features, | |
timesteps.type_as(x), | |
condition_features_repeated | |
) | |
prediction_type = self.config.diffusion_head_config.prediction_type | |
if prediction_type == "epsilon": | |
target_for_loss = noise | |
elif prediction_type == "v_prediction": | |
target_for_loss = self.model.noise_scheduler.get_velocity( | |
speech_features_repeated, noise, timesteps | |
) | |
else: | |
raise NotImplementedError(f"Prediction type {prediction_type} not implemented") | |
diffusion_loss = F.mse_loss(model_output.float(), target_for_loss.float(), reduction='sum') | |
if latent_size > 0 and ddpm_batch_mul > 0: | |
diffusion_loss = diffusion_loss / latent_size / ddpm_batch_mul | |
else: | |
diffusion_loss = torch.tensor(0.0, device=diffusion_loss.device) | |
else: | |
# Dummy loss for DDP to work when there are no speech samples in a batch, | |
# but we are in a speech context. | |
diffusion_loss = sum(p.sum() for p in self.model.prediction_head.parameters()) * 0.0 | |
diffusion_loss += sum(p.sum() for p in self.model.acoustic_connector.parameters()) * 0.0 | |
diffusion_loss += sum(p.sum() for p in self.model.semantic_connector.parameters()) * 0.0 | |
# --- End Diffusion Loss Calculation --- | |
if not return_dict: | |
output = (logits, speech_len) + outputs.to_tuple()[1:] | |
return (loss, diffusion_loss) + output | |
return VibeVoiceCausalLMOutputWithPast( | |
loss=loss, | |
diffusion_loss=diffusion_loss, | |
speech_token_num=speech_len if speech_tensors is not None else 0, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
AutoModel.register(VibeVoiceConfig, VibeVoiceModel) | |
AutoModelForCausalLM.register(VibeVoiceConfig, VibeVoiceForConditionalGeneration) | |
__all__ = [ | |
"VibeVoiceModel", | |
"VibeVoicePreTrainedModel", | |
"VibeVoiceForConditionalGeneration", | |
"VibeVoiceCausalLMOutputWithPast", | |
"VibeVoiceGenerationOutput", | |
] |