Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,109 Bytes
20a29ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union, Callable
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from transformers.models.auto import AutoModel, AutoModelForCausalLM
from transformers.activations import ACT2FN
from transformers.modeling_outputs import CausalLMOutput, BaseModelOutputWithPast, ModelOutput
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers import modeling_utils
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.utils import logging
from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceAcousticTokenizerModel, VibeVoiceSemanticTokenizerModel
from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead
from vibevoice.schedule.dpm_solver import DPMSolverMultistepScheduler
from .configuration_vibevoice import VibeVoiceConfig
logger = logging.get_logger(__name__)
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"]
@dataclass
class VibeVoiceCausalLMOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
diffusion_loss: Optional[torch.FloatTensor] = None
speech_token_num: Optional[int] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class VibeVoiceGenerationOutput(ModelOutput):
"""
Output type for VibeVoice generation.
Args:
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The generated sequences.
speech_outputs (`List[torch.FloatTensor]`, *optional*):
List of generated speech waveforms or latents for each speech segment.
"""
sequences: torch.LongTensor = None
speech_outputs: Optional[List[torch.FloatTensor]] = None
class SpeechConnector(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.fc1 = nn.Linear(input_dim, output_dim)
self.norm = LlamaRMSNorm(output_dim, eps=1e-6)
self.fc2 = nn.Linear(output_dim, output_dim)
def forward(self, features, **kwargs):
x = self.fc1(features)
x = self.norm(x)
x = self.fc2(x)
return x
# @auto_docstring
class VibeVoicePreTrainedModel(PreTrainedModel):
config_class = VibeVoiceConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
_supports_cache_class = True
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
if isinstance(module, VibeVoiceDiffusionHead):
module.initialize_weights()
return
# Use the language model's initializer_range if available
if hasattr(self.config, 'language_model_config') and hasattr(self.config.language_model_config, 'initializer_range'):
std = self.config.language_model_config.initializer_range
elif hasattr(self.config, 'decoder_config') and hasattr(self.config.decoder_config, 'initializer_range'):
std = self.config.decoder_config.initializer_range
else:
std = 0.02 # Default value
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
module.bias.data.zero_()
# @auto_docstring
class VibeVoiceModel(VibeVoicePreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, 'torch_dtype') and config.torch_dtype is not None:
if isinstance(config.torch_dtype, str):
dtype = getattr(torch, config.torch_dtype)
else:
dtype = config.torch_dtype
else:
dtype = torch.float32
# Initialize Qwen2 model for language modeling
lm_config = config.decoder_config
self.language_model = AutoModel.from_config(lm_config)
# Initialize speech components if needed
self.acoustic_tokenizer = AutoModel.from_config(config.acoustic_tokenizer_config).to(dtype)
self.semantic_tokenizer = AutoModel.from_config(config.semantic_tokenizer_config).to(dtype)
self.acoustic_connector = SpeechConnector(config.acoustic_vae_dim, lm_config.hidden_size).to(dtype)
self.semantic_connector = SpeechConnector(config.semantic_vae_dim, lm_config.hidden_size).to(dtype)
# Register scaling factors as buffers - use 1D tensors for FSDP compatibility
self.register_buffer('speech_scaling_factor', torch.tensor(float('nan')))
self.register_buffer('speech_bias_factor', torch.tensor(float('nan')))
# Initialize prediction head for speech generation
self.prediction_head = AutoModel.from_config(config.diffusion_head_config).to(dtype)
# Initialize noise scheduler
self.noise_scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=config.diffusion_head_config.ddpm_num_steps,
beta_schedule=config.diffusion_head_config.ddpm_beta_schedule,
prediction_type=config.diffusion_head_config.prediction_type
)
def get_input_embeddings(self):
if hasattr(self.language_model, 'embed_tokens'):
# If the language model has an embed_tokens attribute, return it
return self.language_model.embed_tokens
for name, attr in self.language_model.fullmap.items(): # parallel by nnscaler, the name is changed
if attr.orig_name == 'embed_tokens.weight':
return getattr(self.language_model, name)
assert False, 'should not arrive here'
def set_input_embeddings(self, value):
self.language_model.embed_tokens = value
def set_speech_tokenizers(self, acoustic_tokenizer=None, semantic_tokenizer=None):
"""Set the speech tokenizers used for encoding and decoding speech."""
self.acoustic_tokenizer = acoustic_tokenizer
self.semantic_tokenizer = semantic_tokenizer
# Reset the encoder to evaluation mode
if self.acoustic_tokenizer is not None:
self.acoustic_tokenizer.eval()
if self.semantic_tokenizer is not None:
self.semantic_tokenizer.eval()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple, BaseModelOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Forward through language model
outputs = self.language_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
if not return_dict:
return outputs
return BaseModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class VibeVoiceForConditionalGeneration(VibeVoicePreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
def __init__(self, config):
super().__init__(config)
self.model = VibeVoiceModel(config)
self.vocab_size = config.decoder_config.vocab_size
self.lm_head = nn.Linear(config.decoder_config.hidden_size, self.vocab_size, bias=False)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.lm_head
def set_decoder(self, decoder):
self.model.language_model = decoder
def get_decoder(self):
return self.model.language_model
def tie_weights(self):
"""
Tie the weights between the input embeddings and the output embeddings.
"""
if getattr(self.config.decoder_config, 'tie_word_embeddings', False):
# The standard PreTrainedModel method will handle the tying.
# It typically does a simple parameter object assignment, which is
# CORRECT to do BEFORE FSDP wraps the model.
output_embeddings = self.get_output_embeddings()
input_embeddings = self.get_input_embeddings()
if hasattr(input_embeddings, 'weight'):
output_embeddings.weight = input_embeddings.weight
else:
# maybe returned input_embeddings a tensor directly
output_embeddings.weight = input_embeddings
if getattr(output_embeddings, "bias", None) is not None:
output_embeddings.bias.data = nn.functional.pad(
output_embeddings.bias.data,
(0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0]),
"constant",
0,
)
print("✅ Tied input and output embeddings using standard assignment.")
else:
print("ℹ️ tie_word_embeddings is False, not tying weights.")
# Also, ensure set_output_embeddings is safe, though your implementation looks okay.
# The key is to avoid calling it after accelerator.prepare().
def set_output_embeddings(self, new_embeddings):
# Your current implementation using data.copy_ is good practice,
# but the best way is to not call this after prepare().
self.lm_head = new_embeddings
def forward_speech_features(
self,
speech_tensors=None,
speech_masks=None,
speech_type="audio",
return_unmask=False
):
if speech_tensors is None:
# Use config to get vae_dim instead of non-existent self.args
vae_dim = self.config.acoustic_tokenizer_config.vae_dim
audio_features = torch.zeros(1, 1, vae_dim).to(self.get_input_embeddings().weight)
connect_features = self.model.acoustic_connector(audio_features)
return audio_features, connect_features
else:
with torch.no_grad():
if speech_type == "audio":
with torch.no_grad():
frames = self.model.acoustic_tokenizer.encode(speech_tensors.unsqueeze(1))[0][0]
audio_tokens = frames.sample(self.model.acoustic_tokenizer.std_dist_type)[0]
elif speech_type == "vae":
# Use config to get vae_dim instead of non-existent self.args
vae_dim = self.config.acoustic_tokenizer_config.vae_dim
speech_mode = speech_tensors.reshape(speech_tensors.size(0), -1, vae_dim)
# gaussian sample from the speech_mode
batch_size = speech_mode.size(0)
value = self.model.acoustic_tokenizer.fix_std / 0.8
std = torch.randn(batch_size, dtype=speech_mode.dtype, device=speech_mode.device) * value
std = std.view(-1, *[1] * (speech_mode.dim() - 1))
audio_tokens = speech_mode + std * torch.randn(speech_mode.shape).to(speech_mode)
else:
raise NotImplementedError(f"Speech type {speech_type} not implemented")
if torch.isnan(self.model.speech_scaling_factor) or torch.isnan(self.model.speech_bias_factor):
scaling_factor = 1. / audio_tokens[speech_masks].flatten().std()
bias_factor = -audio_tokens[speech_masks].flatten().mean()
# Only use distributed operations if the process group is initialized
if dist.is_available() and dist.is_initialized():
dist.all_reduce(scaling_factor, op=dist.ReduceOp.SUM)
dist.all_reduce(bias_factor, op=dist.ReduceOp.SUM)
world_size = dist.get_world_size()
self.model.speech_scaling_factor.copy_(scaling_factor / world_size)
self.model.speech_bias_factor.copy_(bias_factor / world_size)
print(f"Speech scaling factor (distributed): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True)
else:
# Single process case
self.model.speech_scaling_factor.copy_(scaling_factor)
self.model.speech_bias_factor.copy_(bias_factor)
print(f"Speech scaling factor (single process): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True)
audio_features = (audio_tokens + self.model.speech_bias_factor) * self.model.speech_scaling_factor
connect_features = self.model.acoustic_connector(audio_features)
if return_unmask:
return audio_features, connect_features
return audio_features[speech_masks], connect_features[speech_masks]
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
# New arguments for speech processing and loss calculation
speech_tensors: Optional[torch.FloatTensor] = None,
speech_masks: Optional[torch.BoolTensor] = None,
speeches_loss_input: Optional[torch.FloatTensor] = None,
speech_semantic_tensors: Optional[torch.FloatTensor] = None,
acoustic_input_mask: Optional[torch.BoolTensor] = None,
acoustic_loss_mask: Optional[torch.BoolTensor] = None,
ddpm_batch_mul: int = 1,
**kwargs: Optional[Dict[str, Union[torch.Tensor, str]]],
) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
x = self.get_input_embeddings()(input_ids)
semantic_speech_all_connect_features = self.model.semantic_connector(speech_semantic_tensors)
if speeches_loss_input is not None:
# only part audio need diffuse
speech_all_features, speech_all_connect_features = self.forward_speech_features(
speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None,
speech_masks=speech_masks,
speech_type=kwargs.get("speech_type", "audio"),
return_unmask=True
)
if speech_tensors is not None:
if semantic_speech_all_connect_features is not None:
x[acoustic_input_mask] = speech_all_connect_features[speech_masks] + semantic_speech_all_connect_features[speech_masks]
else:
x[acoustic_input_mask] = speech_all_connect_features[speech_masks]
speech_features = speech_all_features[speeches_loss_input.unsqueeze(-1) & speech_masks] # only part audio need diffuse
speech_connect_features = speech_all_connect_features[speeches_loss_input.unsqueeze(-1) & speech_masks]
else:
speech_features, speech_connect_features = self.forward_speech_features(
speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None,
speech_masks=speech_masks,
speech_type=kwargs.get("speech_type", "audio"),
)
if speech_tensors is not None:
x[acoustic_input_mask] = speech_connect_features
outputs = self.model(
input_ids=None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=x,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=False,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs.last_hidden_state
logits = self.lm_head(hidden_states)
# logits = logits.float()
loss = None
if labels is not None:
# The custom CE loss with masking is calculated in the training script.
# We leave the standard loss calculation here as None.
pass
# --- Diffusion Loss Calculation ---
diffusion_loss = None
# This block is executed only if we are in a context that involves speech.
if speech_tensors is not None and acoustic_loss_mask.sum().item() > 0:
condition_features = hidden_states[acoustic_loss_mask]
speech_len, latent_size = speech_features.shape
noise = torch.randn(
(speech_len * ddpm_batch_mul, latent_size),
device=hidden_states.device,
dtype=hidden_states.dtype
)
timesteps = torch.multinomial(
torch.ones(self.config.diffusion_head_config.ddpm_num_steps),
speech_len * ddpm_batch_mul,
replacement=True,
).to(hidden_states.device)
speech_features_repeated = speech_features.repeat_interleave(ddpm_batch_mul, dim=0)
condition_features_repeated = condition_features.repeat_interleave(ddpm_batch_mul, dim=0)
noisy_speech_features = self.model.noise_scheduler.add_noise(
speech_features_repeated, noise, timesteps
)
model_output = self.model.prediction_head(
noisy_speech_features,
timesteps.type_as(x),
condition_features_repeated
)
prediction_type = self.config.diffusion_head_config.prediction_type
if prediction_type == "epsilon":
target_for_loss = noise
elif prediction_type == "v_prediction":
target_for_loss = self.model.noise_scheduler.get_velocity(
speech_features_repeated, noise, timesteps
)
else:
raise NotImplementedError(f"Prediction type {prediction_type} not implemented")
diffusion_loss = F.mse_loss(model_output.float(), target_for_loss.float(), reduction='sum')
if latent_size > 0 and ddpm_batch_mul > 0:
diffusion_loss = diffusion_loss / latent_size / ddpm_batch_mul
else:
diffusion_loss = torch.tensor(0.0, device=diffusion_loss.device)
else:
# Dummy loss for DDP to work when there are no speech samples in a batch,
# but we are in a speech context.
diffusion_loss = sum(p.sum() for p in self.model.prediction_head.parameters()) * 0.0
diffusion_loss += sum(p.sum() for p in self.model.acoustic_connector.parameters()) * 0.0
diffusion_loss += sum(p.sum() for p in self.model.semantic_connector.parameters()) * 0.0
# --- End Diffusion Loss Calculation ---
if not return_dict:
output = (logits, speech_len) + outputs.to_tuple()[1:]
return (loss, diffusion_loss) + output
return VibeVoiceCausalLMOutputWithPast(
loss=loss,
diffusion_loss=diffusion_loss,
speech_token_num=speech_len if speech_tensors is not None else 0,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
AutoModel.register(VibeVoiceConfig, VibeVoiceModel)
AutoModelForCausalLM.register(VibeVoiceConfig, VibeVoiceForConditionalGeneration)
__all__ = [
"VibeVoiceModel",
"VibeVoicePreTrainedModel",
"VibeVoiceForConditionalGeneration",
"VibeVoiceCausalLMOutputWithPast",
"VibeVoiceGenerationOutput",
] |