File size: 22,109 Bytes
20a29ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union, Callable
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist

from transformers.models.auto import AutoModel, AutoModelForCausalLM

from transformers.activations import ACT2FN
from transformers.modeling_outputs import CausalLMOutput, BaseModelOutputWithPast, ModelOutput
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers import modeling_utils
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.utils import logging


from .modular_vibevoice_tokenizer import VibeVoiceTokenizerStreamingCache, VibeVoiceAcousticTokenizerModel, VibeVoiceSemanticTokenizerModel
from .modular_vibevoice_diffusion_head import VibeVoiceDiffusionHead
from vibevoice.schedule.dpm_solver import DPMSolverMultistepScheduler

from .configuration_vibevoice import VibeVoiceConfig


logger = logging.get_logger(__name__)

if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
    modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", "rowwise"]

@dataclass
class VibeVoiceCausalLMOutputWithPast(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    diffusion_loss: Optional[torch.FloatTensor] = None
    speech_token_num: Optional[int] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


@dataclass
class VibeVoiceGenerationOutput(ModelOutput):
    """
    Output type for VibeVoice generation.
    
    Args:
        sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            The generated sequences. 
        speech_outputs (`List[torch.FloatTensor]`, *optional*):
            List of generated speech waveforms or latents for each speech segment.
    """
    sequences: torch.LongTensor = None
    speech_outputs: Optional[List[torch.FloatTensor]] = None


class SpeechConnector(nn.Module):
    def __init__(self, input_dim, output_dim):
        super().__init__()
        self.fc1 = nn.Linear(input_dim, output_dim)
        self.norm = LlamaRMSNorm(output_dim, eps=1e-6)
        self.fc2 = nn.Linear(output_dim, output_dim)

    def forward(self, features, **kwargs):    
        x = self.fc1(features)
        x = self.norm(x)
        x = self.fc2(x)
        return x


# @auto_docstring
class VibeVoicePreTrainedModel(PreTrainedModel):
    config_class = VibeVoiceConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _skip_keys_device_placement = "past_key_values"
    _supports_cache_class = True
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_quantized_cache = True
    _supports_static_cache = True
    _supports_attention_backend = True

    def _init_weights(self, module):
        if isinstance(module, VibeVoiceDiffusionHead):
            module.initialize_weights()
            return

        # Use the language model's initializer_range if available
        if hasattr(self.config, 'language_model_config') and hasattr(self.config.language_model_config, 'initializer_range'):
            std = self.config.language_model_config.initializer_range
        elif hasattr(self.config, 'decoder_config') and hasattr(self.config.decoder_config, 'initializer_range'):
            std = self.config.decoder_config.initializer_range
        else:
            std = 0.02  # Default value
            
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.weight.data.fill_(1.0)
            module.bias.data.zero_()

# @auto_docstring
class VibeVoiceModel(VibeVoicePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        
        if hasattr(config, 'torch_dtype') and config.torch_dtype is not None:
            if isinstance(config.torch_dtype, str):
                dtype = getattr(torch, config.torch_dtype)
            else:
                dtype = config.torch_dtype
        else:
            dtype = torch.float32
        
        # Initialize Qwen2 model for language modeling
        lm_config = config.decoder_config 
        self.language_model = AutoModel.from_config(lm_config)
        
        # Initialize speech components if needed
        self.acoustic_tokenizer = AutoModel.from_config(config.acoustic_tokenizer_config).to(dtype)
        self.semantic_tokenizer = AutoModel.from_config(config.semantic_tokenizer_config).to(dtype)

        self.acoustic_connector = SpeechConnector(config.acoustic_vae_dim, lm_config.hidden_size).to(dtype)
        self.semantic_connector = SpeechConnector(config.semantic_vae_dim, lm_config.hidden_size).to(dtype)
        
        # Register scaling factors as buffers - use 1D tensors for FSDP compatibility
        self.register_buffer('speech_scaling_factor', torch.tensor(float('nan')))  
        self.register_buffer('speech_bias_factor', torch.tensor(float('nan')))

        # Initialize prediction head for speech generation
        self.prediction_head = AutoModel.from_config(config.diffusion_head_config).to(dtype)

        # Initialize noise scheduler
        self.noise_scheduler = DPMSolverMultistepScheduler(
            num_train_timesteps=config.diffusion_head_config.ddpm_num_steps,
            beta_schedule=config.diffusion_head_config.ddpm_beta_schedule,
            prediction_type=config.diffusion_head_config.prediction_type
        )
    
    def get_input_embeddings(self):
        if hasattr(self.language_model, 'embed_tokens'):
            # If the language model has an embed_tokens attribute, return it
            return self.language_model.embed_tokens
        
        for name, attr in self.language_model.fullmap.items(): # parallel by nnscaler, the name is changed
            if attr.orig_name == 'embed_tokens.weight':
                return getattr(self.language_model, name)
        assert False, 'should not arrive here'

    def set_input_embeddings(self, value):
        self.language_model.embed_tokens = value
    
    def set_speech_tokenizers(self, acoustic_tokenizer=None, semantic_tokenizer=None):
        """Set the speech tokenizers used for encoding and decoding speech."""
        self.acoustic_tokenizer = acoustic_tokenizer
        self.semantic_tokenizer = semantic_tokenizer
        
        # Reset the encoder to evaluation mode
        if self.acoustic_tokenizer is not None:
            self.acoustic_tokenizer.eval()
            
        if self.semantic_tokenizer is not None:
            self.semantic_tokenizer.eval()
    
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        # Forward through language model
        outputs = self.language_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            **kwargs,
        )
        
        if not return_dict:
            return outputs
            
        return BaseModelOutputWithPast(
            last_hidden_state=outputs.last_hidden_state,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class VibeVoiceForConditionalGeneration(VibeVoicePreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]
    _tp_plan = {"lm_head": "colwise_rep"}

    def __init__(self, config):
        super().__init__(config)
        self.model = VibeVoiceModel(config)
        self.vocab_size = config.decoder_config.vocab_size
        self.lm_head = nn.Linear(config.decoder_config.hidden_size, self.vocab_size, bias=False)

        self.post_init()
        
    def get_input_embeddings(self):
        return self.model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.lm_head

    def set_decoder(self, decoder):
        self.model.language_model = decoder

    def get_decoder(self):
        return self.model.language_model

    def tie_weights(self):
        """
        Tie the weights between the input embeddings and the output embeddings.
        """
        if getattr(self.config.decoder_config, 'tie_word_embeddings', False):
            # The standard PreTrainedModel method will handle the tying.
            # It typically does a simple parameter object assignment, which is
            # CORRECT to do BEFORE FSDP wraps the model.
            output_embeddings = self.get_output_embeddings()
            input_embeddings = self.get_input_embeddings()
            if hasattr(input_embeddings, 'weight'):
                output_embeddings.weight = input_embeddings.weight
            else:
                # maybe returned input_embeddings a tensor directly
                output_embeddings.weight = input_embeddings

            if getattr(output_embeddings, "bias", None) is not None:
                output_embeddings.bias.data = nn.functional.pad(
                    output_embeddings.bias.data,
                    (0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0]),
                    "constant",
                    0,
                )
            print("✅ Tied input and output embeddings using standard assignment.")
        else:
            print("ℹ️  tie_word_embeddings is False, not tying weights.")

    # Also, ensure set_output_embeddings is safe, though your implementation looks okay.
    # The key is to avoid calling it after accelerator.prepare().
    def set_output_embeddings(self, new_embeddings):
        # Your current implementation using data.copy_ is good practice,
        # but the best way is to not call this after prepare().
        self.lm_head = new_embeddings

    def forward_speech_features(
            self, 
            speech_tensors=None, 
            speech_masks=None, 
            speech_type="audio", 
            return_unmask=False
        ):
        if speech_tensors is None:
            # Use config to get vae_dim instead of non-existent self.args
            vae_dim = self.config.acoustic_tokenizer_config.vae_dim
            audio_features = torch.zeros(1, 1, vae_dim).to(self.get_input_embeddings().weight)
            connect_features = self.model.acoustic_connector(audio_features)
            return audio_features, connect_features
        else:
            with torch.no_grad():
                if speech_type == "audio":
                    with torch.no_grad():
                        frames = self.model.acoustic_tokenizer.encode(speech_tensors.unsqueeze(1))[0][0]
                    audio_tokens = frames.sample(self.model.acoustic_tokenizer.std_dist_type)[0]

                elif speech_type == "vae":
                    # Use config to get vae_dim instead of non-existent self.args
                    vae_dim = self.config.acoustic_tokenizer_config.vae_dim
                    speech_mode = speech_tensors.reshape(speech_tensors.size(0), -1, vae_dim)

                    # gaussian sample from the speech_mode
                    batch_size = speech_mode.size(0)
                    value = self.model.acoustic_tokenizer.fix_std / 0.8
                    std = torch.randn(batch_size, dtype=speech_mode.dtype, device=speech_mode.device) * value
                    std = std.view(-1, *[1] * (speech_mode.dim() - 1))
                    audio_tokens = speech_mode + std * torch.randn(speech_mode.shape).to(speech_mode)
                else:
                    raise NotImplementedError(f"Speech type {speech_type} not implemented")
                
                if torch.isnan(self.model.speech_scaling_factor) or torch.isnan(self.model.speech_bias_factor):
                    scaling_factor = 1. / audio_tokens[speech_masks].flatten().std()
                    bias_factor = -audio_tokens[speech_masks].flatten().mean()
                    
                    # Only use distributed operations if the process group is initialized
                    if dist.is_available() and dist.is_initialized():
                        dist.all_reduce(scaling_factor, op=dist.ReduceOp.SUM)
                        dist.all_reduce(bias_factor, op=dist.ReduceOp.SUM)
                        world_size = dist.get_world_size()
                        self.model.speech_scaling_factor.copy_(scaling_factor / world_size)  
                        self.model.speech_bias_factor.copy_(bias_factor / world_size)
                        print(f"Speech scaling factor (distributed): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True)
                    else:
                        # Single process case
                        self.model.speech_scaling_factor.copy_(scaling_factor)  
                        self.model.speech_bias_factor.copy_(bias_factor)
                        print(f"Speech scaling factor (single process): {self.model.speech_scaling_factor}, bias factor: {self.model.speech_bias_factor}", flush=True)
                    
                audio_features = (audio_tokens + self.model.speech_bias_factor) * self.model.speech_scaling_factor
            
            connect_features = self.model.acoustic_connector(audio_features)
            if return_unmask:
                return audio_features, connect_features
            return audio_features[speech_masks], connect_features[speech_masks]
        
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        # New arguments for speech processing and loss calculation
        speech_tensors: Optional[torch.FloatTensor] = None,
        speech_masks: Optional[torch.BoolTensor] = None,
        speeches_loss_input: Optional[torch.FloatTensor] = None,
        speech_semantic_tensors: Optional[torch.FloatTensor] = None, 
        acoustic_input_mask: Optional[torch.BoolTensor] = None,
        acoustic_loss_mask: Optional[torch.BoolTensor] = None,
        ddpm_batch_mul: int = 1,
        **kwargs: Optional[Dict[str, Union[torch.Tensor, str]]],
        ) -> Union[Tuple, VibeVoiceCausalLMOutputWithPast]:
        
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        x = self.get_input_embeddings()(input_ids)

        semantic_speech_all_connect_features = self.model.semantic_connector(speech_semantic_tensors)
        if speeches_loss_input is not None:
            # only part audio need diffuse
            speech_all_features, speech_all_connect_features = self.forward_speech_features(
                    speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None,
                    speech_masks=speech_masks,
                    speech_type=kwargs.get("speech_type", "audio"),
                    return_unmask=True
                )
            if speech_tensors is not None:
                if semantic_speech_all_connect_features is not None:
                    x[acoustic_input_mask] = speech_all_connect_features[speech_masks] + semantic_speech_all_connect_features[speech_masks]
                else:
                    x[acoustic_input_mask] = speech_all_connect_features[speech_masks]
                speech_features = speech_all_features[speeches_loss_input.unsqueeze(-1) & speech_masks] # only part audio need diffuse
                speech_connect_features = speech_all_connect_features[speeches_loss_input.unsqueeze(-1) & speech_masks]
        else:
            speech_features, speech_connect_features = self.forward_speech_features(
                    speech_tensors=speech_tensors.type_as(x) if speech_tensors is not None else None,
                    speech_masks=speech_masks,
                    speech_type=kwargs.get("speech_type", "audio"),
                )
            if speech_tensors is not None:
                x[acoustic_input_mask] = speech_connect_features

        outputs = self.model(
            input_ids=None,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=x,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=False,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs.last_hidden_state
        logits = self.lm_head(hidden_states)
        # logits = logits.float()

        loss = None
        if labels is not None:
            # The custom CE loss with masking is calculated in the training script.
            # We leave the standard loss calculation here as None.
            pass

        # --- Diffusion Loss Calculation ---
        diffusion_loss = None
        # This block is executed only if we are in a context that involves speech.
        if speech_tensors is not None and acoustic_loss_mask.sum().item() > 0:
            condition_features = hidden_states[acoustic_loss_mask]
            
            speech_len, latent_size = speech_features.shape
            
            noise = torch.randn(
                (speech_len * ddpm_batch_mul, latent_size),
                device=hidden_states.device,
                dtype=hidden_states.dtype
            )
            
            timesteps = torch.multinomial(
                torch.ones(self.config.diffusion_head_config.ddpm_num_steps),
                speech_len * ddpm_batch_mul,
                replacement=True,
            ).to(hidden_states.device)

            speech_features_repeated = speech_features.repeat_interleave(ddpm_batch_mul, dim=0)
            condition_features_repeated = condition_features.repeat_interleave(ddpm_batch_mul, dim=0)

            noisy_speech_features = self.model.noise_scheduler.add_noise(
                speech_features_repeated, noise, timesteps
            )
            
            model_output = self.model.prediction_head(
                noisy_speech_features, 
                timesteps.type_as(x), 
                condition_features_repeated
            )

            prediction_type = self.config.diffusion_head_config.prediction_type
            if prediction_type == "epsilon":
                target_for_loss = noise
            elif prediction_type == "v_prediction":
                target_for_loss = self.model.noise_scheduler.get_velocity(
                    speech_features_repeated, noise, timesteps
                )
            else:
                raise NotImplementedError(f"Prediction type {prediction_type} not implemented")

            diffusion_loss = F.mse_loss(model_output.float(), target_for_loss.float(), reduction='sum')
            if latent_size > 0 and ddpm_batch_mul > 0:
                diffusion_loss = diffusion_loss / latent_size / ddpm_batch_mul
            else:
                diffusion_loss = torch.tensor(0.0, device=diffusion_loss.device)
        
        else:
            # Dummy loss for DDP to work when there are no speech samples in a batch,
            # but we are in a speech context.
            diffusion_loss = sum(p.sum() for p in self.model.prediction_head.parameters()) * 0.0
            diffusion_loss += sum(p.sum() for p in self.model.acoustic_connector.parameters()) * 0.0
            diffusion_loss += sum(p.sum() for p in self.model.semantic_connector.parameters()) * 0.0
        # --- End Diffusion Loss Calculation ---

        if not return_dict:
            output = (logits, speech_len) + outputs.to_tuple()[1:]
            return (loss, diffusion_loss) + output

        return VibeVoiceCausalLMOutputWithPast(
            loss=loss,
            diffusion_loss=diffusion_loss,
            speech_token_num=speech_len if speech_tensors is not None else 0,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

AutoModel.register(VibeVoiceConfig, VibeVoiceModel)
AutoModelForCausalLM.register(VibeVoiceConfig, VibeVoiceForConditionalGeneration)

__all__ = [
    "VibeVoiceModel",
    "VibeVoicePreTrainedModel",
    "VibeVoiceForConditionalGeneration",
    "VibeVoiceCausalLMOutputWithPast",
    "VibeVoiceGenerationOutput",
]