File size: 22,199 Bytes
f297990
8d4b5ca
 
 
 
 
 
 
 
 
 
 
f297990
 
8d4b5ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
708505f
 
8d4b5ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import gradio as gr
import torch
import boto3
import requests
import re
from bs4 import BeautifulSoup
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import os
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import hashlib


#First output the thinking process in <think> </think> tags and then output the final answer in <answer> </answer> tags.
#Answer the following question based on the information above and the given image, and provide citations for your response.


# Cache for storing recognition results
recognition_cache = {}

# Function to calculate image hash for caching
def calculate_image_hash(image):
    """Calculate a hash for the image to use as a cache key"""
    if image is None:
        return None
    img_array = np.array(image)
    # Use a simple hash of the image data
    return hashlib.md5(img_array.tobytes()).hexdigest()

# Helper function to remove numbers from brackets
def remove_bracketed_nums(input_string):
    """
    Removes all occurrences of [num] from the input string.
    """
    return re.sub(r'\[\d+\]', '', input_string)

# Function to get Wikipedia links
def fetch_wikipedia_links(entity_id):
    url = f"https://www.wikidata.org/wiki/Special:EntityData/{entity_id}.json"
    links = {}
    try:
        response = requests.get(url)
        response.raise_for_status()
        data = response.json()
        entity_data = data.get("entities", {}).get(entity_id, {})
        if not entity_data:
            print("No data found for the given entity ID.")
            return links

        sitelinks = entity_data.get("sitelinks", {})
        if not sitelinks:
            print("No sitelinks found for the given entity ID.")
            return links

        wikipedia_links = {}
        for site, site_info in sitelinks.items():
            if site.endswith("wiki"):
                language = site.replace("wiki", "")
                url = site_info.get("url")
                wikipedia_links[language] = url

        for lang, link in wikipedia_links.items():
            links[lang] = link

    except requests.RequestException as e:
        print(f"Error fetching data: {e}")
    return links

# Function to get Wikipedia information
def fetch_wikipedia_info(url):
    try:
        # Send HTTP request
        response = requests.get(url)
        response.raise_for_status()

        # Parse HTML content using BeautifulSoup
        soup = BeautifulSoup(response.content, 'html.parser')
        
        # Try multiple methods to find the title
        title = None
        
        # Method 1: Find title in the <title> tag of the page
        if not title:
            title_tag = soup.find('title')
            if title_tag:
                title = title_tag.text.replace(' - Wikipedia', '').strip()
        
        # Method 2: Find title in h1 tag
        if not title:
            title_tag = soup.find('h1', {'id': 'firstHeading'})
            if title_tag:
                title = title_tag.text.strip()
        
        # Method 3: If previous methods fail, use a more flexible method
        if not title:
            title_tag = soup.find('h1')
            if title_tag:
                title = title_tag.text.strip()
        
        # Extract sections and their content
        sections = {}
        current_section = None
        paragraphs = soup.find_all('p')
        
        # Traverse all headings and paragraphs, mapping sections to content
        for element in soup.find_all(['h2', 'p']):
            if element.name == 'h2':
                # New section starts, get section title
                section_title = element.text.strip()
                current_section = section_title
                sections[current_section] = []
            elif element.name == 'p' and current_section:
                # Add paragraph to current section
                paragraph_text = element.text.strip()
                if paragraph_text:
                    sections[current_section].append(paragraph_text)
        
        # Convert section content to format where each section is connected into a single string
        sections = {section: '\n'.join(content) for section, content in sections.items()}
        
        return {
            'title': title or 'No title found',
            'sections': sections
        }
    
    except requests.RequestException as e:
        return {'error': f'Request failed: {e}'}
    except Exception as e:
        return {'error': f'An error occurred: {e}'}

# Use AWS Rekognition to recognize celebrities in the image
def recognize_celebrities(image_path, confidence_threshold=90):
    client = boto3.client(
        "rekognition",
        aws_access_key_id=os.getenv('aws_access_key_id'),
        aws_secret_access_key=os.getenv('aws_secret_access_key'),
        region_name='us-east-1'
    )
    
    with open(image_path, 'rb') as image:
        response = client.recognize_celebrities(Image={'Bytes': image.read()})
    
    # Filter out celebrities with None or low confidence
    filtered_celebs = [cele for cele in response.get('CelebrityFaces', []) 
                      if cele.get('MatchConfidence') is not None and cele.get('MatchConfidence') > confidence_threshold]
    
    names = [cele['Name'] for cele in filtered_celebs]
    bounding_boxes = [cele['Face']['BoundingBox'] for cele in filtered_celebs]
    wikidatas = [cele['Urls'][0] for cele in filtered_celebs]
    
    return names, bounding_boxes, wikidatas

# Draw bounding boxes on the image
def draw_bounding_boxes(image_path, bounding_boxes, names):
    img = Image.open(image_path)
    draw = ImageDraw.Draw(img)
    
    width, height = img.size
    
    for i, bbox in enumerate(bounding_boxes):
        left = int(bbox['Left'] * width)
        top = int(bbox['Top'] * height)
        right = int((bbox['Left'] + bbox['Width']) * width)
        bottom = int((bbox['Top'] + bbox['Height']) * height)
        
        # Draw rectangle
        draw.rectangle([(left, top), (right, bottom)], outline="red", width=3)
        
        # Add name label
        text = f"[{i+1}]: {names[i]}"
        font = ImageFont.truetype("arial.ttf", 20)  # Adjust font and size as needed
        text_bbox = draw.textbbox((left, top - 20), text, font=font)
        draw.rectangle(text_bbox, fill="white")
        draw.text((left, top - 20), text, fill="red", font=font)
    return np.array(img)

# Resize the image to a smaller size for display
def resize_image_for_display(img_array, max_width=500):
    img = Image.fromarray(img_array)
    width, height = img.size
    if width > max_width:
        ratio = max_width / width
        new_height = int(height * ratio)
        img = img.resize((max_width, new_height), Image.LANCZOS)
    return np.array(img)

model = Qwen2VLForConditionalGeneration.from_pretrained(
    "weihongliang/RC-Qwen2VL-2b", 
    torch_dtype=torch.float16, 
    device_map="auto"
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")

# Use Qwen model for Q&A
def qwen_qa(image_path, question, names, bounding_boxes, en_wiki_pedia_links, en_intros):
    # Prepare prompt text
    prompt = '\n'.join([
        f"[{i+1}]: The information of the person located at <|box_start|>({int(bbox['Left']*1000)},{int(bbox['Top']*1000)}),"
        f"({int((bbox['Left']+bbox['Width'])*1000)},{int((bbox['Top']+bbox['Height'])*1000)})<|box_end|> in the image: {intro}"
        for i, (name, intro, bbox) in enumerate(zip(
            names, 
            [remove_bracketed_nums(intro).replace('\n','') for intro in en_intros], 
            bounding_boxes
        ))
    ])
    print(prompt)
    # Prepare messages
    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": image_path,
                },
                {"type": "text", "text": f"{prompt}\nAnswer the following question based on the information above and the given image, and provide citations for your response.\n{question}"},
            ],
        }
    ]
    
    # Prepare inference
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)

    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=None,
        padding=True,
        return_tensors="pt",
    )
    
    inputs = inputs.to("cuda")
    
    # Inference: generate output
    generated_ids = model.generate(**inputs, max_new_tokens=4096)
    generated_ids_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
    )[0]
    print(output_text)
    return output_text, en_wiki_pedia_links, prompt

# Compare image with examples by filename or content when available
def is_example_image(image, examples):
    if isinstance(image, str) and os.path.exists(image):
        # If we have a path, try to match by filename
        image_name = os.path.basename(image)
        for example in examples:
            example_name = os.path.basename(example[0])
            if image_name == example_name:
                print(f"Matched example by filename: {image_name}")
                return True, example
    
    # If we couldn't match by filename or if image is an object, return False
    return False, None

# Main processing function
def process_image(image, question, confidence_threshold, examples=None):
    if image is None:
        return None, "Please upload an image", []
    
    # Calculate image hash for caching
    image_hash = calculate_image_hash(image)
    
    # Check if we already have cached recognition results for this image
    cache_key = f"{image_hash}_{confidence_threshold}"
    if cache_key in recognition_cache:
        print("Using cached recognition results")
        names, bounding_boxes, en_wiki_pedia_links, en_intros, result_image = recognition_cache[cache_key]
    else:
        print("Performing new recognition")
        # Save uploaded image
        temp_image_path = "temp_image.jpg"
        image.save(temp_image_path)
        
        # Check if this image matches one of our example images
        # First, get original filename from gradio image object if available
        original_filename = None
        if hasattr(image, 'name'):
            original_filename = image.name
        
        # For each example, check if the file exists and compare
        example_match = None
        if examples:
            for example in examples:
                example_path = example[0]
                if os.path.exists(example_path):
                    example_img = Image.open(example_path)
                    # Compare images by size first (quick check)
                    if example_img.size == image.size:
                        # More thorough comparison - hash the pixels
                        example_hash = calculate_image_hash(example_img)
                        if example_hash == image_hash:
                            example_match = example
                            break
                    example_img.close()
        
        if example_match:
            print("Using example data instead of recognition")
            names = example_match[2]
            bounding_boxes = example_match[3]
            wikidatas = example_match[4]
            print(f"Example data: {names}, {bounding_boxes}, {wikidatas}")
        else:
            # Recognize celebrities with adjusted confidence threshold
            names, bounding_boxes, wikidatas = recognize_celebrities(temp_image_path, confidence_threshold)
        
        print(f'θ―†εˆ«_{names}_{bounding_boxes}_{wikidatas}')
        en_wiki_pedia_links = []
        en_intros = []
        
        for wikidata_url in wikidatas:
            entity_id = wikidata_url.split('/')[-1]
            links = fetch_wikipedia_links(entity_id)
            
            if 'en' in links:
                en_link = links['en']
                en_wiki_pedia_links.append(en_link)
                
                wiki_info = fetch_wikipedia_info(en_link)
                # Try to get 'Contents' section, if it doesn't exist, try to get the first section
                intro = wiki_info['sections'].get('Contents', '')
                if not intro and wiki_info['sections']:
                    intro = next(iter(wiki_info['sections'].values()), '')
                
                en_intros.append(intro)
            else:
                en_wiki_pedia_links.append("No English Wikipedia link found")
                en_intros.append("No information available")
        
        if not names:
            if os.path.exists(temp_image_path):
                os.remove(temp_image_path)
            return None, f"No celebrities could be recognized with confidence threshold {confidence_threshold}%", []
        
        indices = list(range(len(en_intros)))
        
        # Sort indices by the length of en_intros elements
        indices.sort(key=lambda i: len(en_intros[i]))
        
        # Use sorted indices to rearrange the three lists
        names = [names[i] for i in indices]
        bounding_boxes = [bounding_boxes[i] for i in indices]
        en_intros = [en_intros[i] for i in indices]
        en_wiki_pedia_links = [en_wiki_pedia_links[i] for i in indices]
        
        # Draw bounding boxes on the image
        result_image = draw_bounding_boxes(temp_image_path, bounding_boxes, names)
        
        # Cache the recognition results
        recognition_cache[cache_key] = (names, bounding_boxes, en_wiki_pedia_links, en_intros, result_image)
        
        # Clean up temporary files
        if os.path.exists(temp_image_path):
            os.remove(temp_image_path)
    
    # Save image for qwen_qa (it requires a file path)
    temp_image_path = "temp_image_for_qa.jpg"
    Image.fromarray(result_image if isinstance(image, np.ndarray) else np.array(image)).save(temp_image_path)
    
    # Resize the result image for display
    resized_image = resize_image_for_display(result_image, max_width=500)
    
    # Use Qwen model for Q&A
    answer, wiki_links, prompt = qwen_qa(temp_image_path, question, names, bounding_boxes, en_wiki_pedia_links, en_intros)
    
    # Prepare recognized person information for frontend
    people_info = [[prompt]]
    [people_info.append([f"{name}: {link}"]) for name, link in zip(names, en_wiki_pedia_links)]
   
    # Clean up temporary files
    if os.path.exists(temp_image_path):
        os.remove(temp_image_path)
    
    return resized_image, answer, people_info

# Create Gradio interface
def create_interface():
    # Define examples - with proper wikidata URLs
    examples = [
        ["./musk_and_huang.jpg", "What is Jensen doing?", 
         ['Jen-Hsun Huang', 'Elon Musk'], 
         [{'Width': 0.14037726819515228, 'Height': 0.20855841040611267, 'Left': 0.20549052953720093, 'Top': 0.05287889018654823}, 
          {'Width': 0.07806053012609482, 'Height': 0.12407417595386505, 'Left': 0.7048892974853516, 'Top': 0.12597641348838806}], 
         ['https://www.wikidata.org/wiki/Q305177', 'https://www.wikidata.org/wiki/Q317521']],
        ["./dtms.jpg", "Describe the image.", 
         ['Claude Shannon', 'John McCarthy', 'Marvin Minsky'], 
         [{'Width': 0.06745696812868118, 'Height': 0.1393456608057022, 'Left': 0.8298415541648865, 'Top': 0.2935926616191864}, 
          {'Width': 0.058158036321401596, 'Height': 0.10835719853639603, 'Left': 0.7029165029525757, 'Top': 0.16815270483493805}, 
          {'Width': 0.05310939624905586, 'Height': 0.1121278703212738, 'Left': 0.4884793162345886, 'Top': 0.19025743007659912}], 
         ['https://www.wikidata.org/wiki/Q92760', 'https://www.wikidata.org/wiki/Q92739', 'https://www.wikidata.org/wiki/Q204815']],
        ["./hinton.jpeg", "Describe the image in detail.", 
         ['Yoshua Bengio', 'Geoffrey Hinton', 'Yann LeCun'], 
         [{'Width': 0.077728271484375, 'Height': 0.16116079688072205, 'Left': 0.8799420595169067, 'Top': 0.4856656789779663}, 
          {'Width': 0.07422236353158951, 'Height': 0.15943190455436707, 'Left': 0.4633428454399109, 'Top': 0.07901764661073685}, 
          {'Width': 0.07562466710805893, 'Height': 0.13936467468738556, 'Left': 0.025178398936986923, 'Top': 0.4953641891479492}], 
         ['https://www.wikidata.org/wiki/Q3572699', 'https://www.wikidata.org/wiki/Q92894', 'https://www.wikidata.org/wiki/Q3571662']],
    ]
    
    # Filter examples to only include files that exist
    existing_examples = []
    for example in examples:
        if os.path.exists(example[0]):
            existing_examples.append(example)
    
    with gr.Blocks(title="Celebrity Recognition and Q&A System") as app:
        gr.Markdown("<div style='text-align: center;'><h1 style=' font-size: 28px; '>Celebrity Recognition and Q&A System</h1></div>")
        gr.Markdown("**RC-MLLM** model is developed based on the Qwen2-VL model through a novel method called **RCVIT (Region-level Context-aware Visual Instruction Tuning)**, using the specially constructed **RCMU dataset** for training. Its core feature is the capability for **Region-level Context-aware Multimodal Understanding (RCMU)**. This means it can simultaneously understand both the visual content of specific regions/objects within an image and their associated textual information (utilizing bounding boxes coordinates), allowing it to respond to user instructions in a more context-aware manner. Simply put, RC-MLLM not only understands images but can also integrate the textual information linked to specific objects within the image for understanding. It achieves outstanding performance on RCMU tasks and is suitable for applications like personalized conversation.")

        markdown_content = """
            πŸ“‘ [Arxiv](https://arxiv.org/abs/your-paper-id) | 
            πŸ€— [Checkpoint]() | 
            πŸ“ [Dataset](https://huggingface.co/your-model-name) |
            [Github](https://github.com/your-username/your-repo) | 
            πŸš€ [Personalized Conversation](https://your-project-url.com)
            """
        gr.Markdown(markdown_content)
        gr.Markdown("πŸ“Œ Upload an image containing celebrities, the system will recognize them and provide Wikipedia-based Q&A using the RC-Qwen2-VL model.")
        
        with gr.Row():
            with gr.Column(scale=1):
                image_input = gr.Image(type="pil", label="Upload Image")
                question_input = gr.Textbox(label="Question", placeholder="Enter your question...")
                confidence_slider = gr.Slider(
                    minimum=50, 
                    maximum=100, 
                    value=90, 
                    step=1, 
                    label="Confidence Threshold (%)", 
                    info="Adjust the minimum confidence level for celebrity recognition"
                )
                submit_button = gr.Button("Ask RC-Qwen2-VL")
                
                # Add examples section
                if existing_examples:
                    gr.Examples(
                        examples=[[example[0], example[1]] for example in existing_examples],
                        inputs=[image_input, question_input],
                        label="Example Images with Questions",
                        fn=None
                    )
            with gr.Column(scale=1):
                image_output = gr.Image(label="Recognition Result")
                answer_output = gr.Textbox(label="RC-Qwen2-VL Answer")

                people_info = gr.Dataframe(
                    headers=["Recognized Person Information and Wikipedia Links"],
                    datatype=["str"],
                    label="Person Information",
                    wrap=True,  # Enable text wrapping
                )
        
        # Function to clear the cache
        def clear_cache():
            global recognition_cache
            old_count = len(recognition_cache)
            recognition_cache = {}
            return f"Cache cleared. {old_count} entries were removed."
        
        # Handle image upload - clear cache when new image is uploaded
        def on_image_upload(image):
            if image is not None:
                clear_cache()
                return f"New image detected. Cache has been cleared."
            return f"No image uploaded. Cache status unchanged."
        
        # Modified submit function to handle examples without the current_example parameter
        def submit_fn(image, question, confidence_threshold):
            # Process image using the recognition system
            return process_image(image, question, confidence_threshold, examples=examples)
        
        # Connect buttons to functions
        submit_button.click(
            fn=submit_fn,
            inputs=[image_input, question_input, confidence_slider],
            outputs=[image_output, answer_output, people_info]
        )
        
        # Clear cache automatically when new image is uploaded
        image_input.change(
            fn=on_image_upload,
            inputs=[image_input],
        )
        
        gr.Markdown("## Instructions")
        gr.Markdown("""
        1. Upload an image containing celebrities
        2. Enter your question, for example:
           - "Who are the people in the image?"
           - "What achievements does the person on the left have?"
           - "What is the relationship between these people?"
        3. Adjust the confidence threshold slider if needed (lower values will recognize more faces but might be less accurate)
        4. Click the submit button to get the answer
        5. Or try one of the examples below
        6. The system caches recognition results for each image and confidence threshold combination
        7. Cache is automatically cleared when you upload a new image
        """)
    
    return app

# Launch the application
if __name__ == "__main__":
    app = create_interface()
    app.launch(share=True)