weihongliang commited on
Commit
8d4b5ca
Β·
verified Β·
1 Parent(s): f297990

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +520 -4
app.py CHANGED
@@ -1,7 +1,523 @@
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import torch
3
+ import boto3
4
+ import requests
5
+ import re
6
+ from bs4 import BeautifulSoup
7
+ from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
8
+ from qwen_vl_utils import process_vision_info
9
+ import os
10
+ from PIL import Image, ImageDraw, ImageFont
11
+ import numpy as np
12
+ import hashlib
13
 
 
 
14
 
15
+ #First output the thinking process in <think> </think> tags and then output the final answer in <answer> </answer> tags.
16
+ #Answer the following question based on the information above and the given image, and provide citations for your response.
17
+
18
+
19
+ # Cache for storing recognition results
20
+ recognition_cache = {}
21
+
22
+ # Function to calculate image hash for caching
23
+ def calculate_image_hash(image):
24
+ """Calculate a hash for the image to use as a cache key"""
25
+ if image is None:
26
+ return None
27
+ img_array = np.array(image)
28
+ # Use a simple hash of the image data
29
+ return hashlib.md5(img_array.tobytes()).hexdigest()
30
+
31
+ # Helper function to remove numbers from brackets
32
+ def remove_bracketed_nums(input_string):
33
+ """
34
+ Removes all occurrences of [num] from the input string.
35
+ """
36
+ return re.sub(r'\[\d+\]', '', input_string)
37
+
38
+ # Function to get Wikipedia links
39
+ def fetch_wikipedia_links(entity_id):
40
+ url = f"https://www.wikidata.org/wiki/Special:EntityData/{entity_id}.json"
41
+ links = {}
42
+ try:
43
+ response = requests.get(url)
44
+ response.raise_for_status()
45
+ data = response.json()
46
+ entity_data = data.get("entities", {}).get(entity_id, {})
47
+ if not entity_data:
48
+ print("No data found for the given entity ID.")
49
+ return links
50
+
51
+ sitelinks = entity_data.get("sitelinks", {})
52
+ if not sitelinks:
53
+ print("No sitelinks found for the given entity ID.")
54
+ return links
55
+
56
+ wikipedia_links = {}
57
+ for site, site_info in sitelinks.items():
58
+ if site.endswith("wiki"):
59
+ language = site.replace("wiki", "")
60
+ url = site_info.get("url")
61
+ wikipedia_links[language] = url
62
+
63
+ for lang, link in wikipedia_links.items():
64
+ links[lang] = link
65
+
66
+ except requests.RequestException as e:
67
+ print(f"Error fetching data: {e}")
68
+ return links
69
+
70
+ # Function to get Wikipedia information
71
+ def fetch_wikipedia_info(url):
72
+ try:
73
+ # Send HTTP request
74
+ response = requests.get(url)
75
+ response.raise_for_status()
76
+
77
+ # Parse HTML content using BeautifulSoup
78
+ soup = BeautifulSoup(response.content, 'html.parser')
79
+
80
+ # Try multiple methods to find the title
81
+ title = None
82
+
83
+ # Method 1: Find title in the <title> tag of the page
84
+ if not title:
85
+ title_tag = soup.find('title')
86
+ if title_tag:
87
+ title = title_tag.text.replace(' - Wikipedia', '').strip()
88
+
89
+ # Method 2: Find title in h1 tag
90
+ if not title:
91
+ title_tag = soup.find('h1', {'id': 'firstHeading'})
92
+ if title_tag:
93
+ title = title_tag.text.strip()
94
+
95
+ # Method 3: If previous methods fail, use a more flexible method
96
+ if not title:
97
+ title_tag = soup.find('h1')
98
+ if title_tag:
99
+ title = title_tag.text.strip()
100
+
101
+ # Extract sections and their content
102
+ sections = {}
103
+ current_section = None
104
+ paragraphs = soup.find_all('p')
105
+
106
+ # Traverse all headings and paragraphs, mapping sections to content
107
+ for element in soup.find_all(['h2', 'p']):
108
+ if element.name == 'h2':
109
+ # New section starts, get section title
110
+ section_title = element.text.strip()
111
+ current_section = section_title
112
+ sections[current_section] = []
113
+ elif element.name == 'p' and current_section:
114
+ # Add paragraph to current section
115
+ paragraph_text = element.text.strip()
116
+ if paragraph_text:
117
+ sections[current_section].append(paragraph_text)
118
+
119
+ # Convert section content to format where each section is connected into a single string
120
+ sections = {section: '\n'.join(content) for section, content in sections.items()}
121
+
122
+ return {
123
+ 'title': title or 'No title found',
124
+ 'sections': sections
125
+ }
126
+
127
+ except requests.RequestException as e:
128
+ return {'error': f'Request failed: {e}'}
129
+ except Exception as e:
130
+ return {'error': f'An error occurred: {e}'}
131
+
132
+ # Use AWS Rekognition to recognize celebrities in the image
133
+ def recognize_celebrities(image_path, confidence_threshold=90):
134
+ client = boto3.client(
135
+ "rekognition",
136
+ aws_access_key_id=,
137
+ aws_secret_access_key=,
138
+ region_name='us-east-1'
139
+ )
140
+
141
+ with open(image_path, 'rb') as image:
142
+ response = client.recognize_celebrities(Image={'Bytes': image.read()})
143
+
144
+ # Filter out celebrities with None or low confidence
145
+ filtered_celebs = [cele for cele in response.get('CelebrityFaces', [])
146
+ if cele.get('MatchConfidence') is not None and cele.get('MatchConfidence') > confidence_threshold]
147
+
148
+ names = [cele['Name'] for cele in filtered_celebs]
149
+ bounding_boxes = [cele['Face']['BoundingBox'] for cele in filtered_celebs]
150
+ wikidatas = [cele['Urls'][0] for cele in filtered_celebs]
151
+
152
+ return names, bounding_boxes, wikidatas
153
+
154
+ # Draw bounding boxes on the image
155
+ def draw_bounding_boxes(image_path, bounding_boxes, names):
156
+ img = Image.open(image_path)
157
+ draw = ImageDraw.Draw(img)
158
+
159
+ width, height = img.size
160
+
161
+ for i, bbox in enumerate(bounding_boxes):
162
+ left = int(bbox['Left'] * width)
163
+ top = int(bbox['Top'] * height)
164
+ right = int((bbox['Left'] + bbox['Width']) * width)
165
+ bottom = int((bbox['Top'] + bbox['Height']) * height)
166
+
167
+ # Draw rectangle
168
+ draw.rectangle([(left, top), (right, bottom)], outline="red", width=3)
169
+
170
+ # Add name label
171
+ text = f"[{i+1}]: {names[i]}"
172
+ font = ImageFont.truetype("arial.ttf", 20) # Adjust font and size as needed
173
+ text_bbox = draw.textbbox((left, top - 20), text, font=font)
174
+ draw.rectangle(text_bbox, fill="white")
175
+ draw.text((left, top - 20), text, fill="red", font=font)
176
+ return np.array(img)
177
+
178
+ # Resize the image to a smaller size for display
179
+ def resize_image_for_display(img_array, max_width=500):
180
+ img = Image.fromarray(img_array)
181
+ width, height = img.size
182
+ if width > max_width:
183
+ ratio = max_width / width
184
+ new_height = int(height * ratio)
185
+ img = img.resize((max_width, new_height), Image.LANCZOS)
186
+ return np.array(img)
187
+
188
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
189
+ "weihongliang/RC-Qwen2VL-2b",
190
+ torch_dtype=torch.float16,
191
+ device_map="auto"
192
+ )
193
+ processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
194
+
195
+ # Use Qwen model for Q&A
196
+ def qwen_qa(image_path, question, names, bounding_boxes, en_wiki_pedia_links, en_intros):
197
+ # Prepare prompt text
198
+ prompt = '\n'.join([
199
+ f"[{i+1}]: The information of the person located at <|box_start|>({int(bbox['Left']*1000)},{int(bbox['Top']*1000)}),"
200
+ f"({int((bbox['Left']+bbox['Width'])*1000)},{int((bbox['Top']+bbox['Height'])*1000)})<|box_end|> in the image: {intro}"
201
+ for i, (name, intro, bbox) in enumerate(zip(
202
+ names,
203
+ [remove_bracketed_nums(intro).replace('\n','') for intro in en_intros],
204
+ bounding_boxes
205
+ ))
206
+ ])
207
+ print(prompt)
208
+ # Prepare messages
209
+ messages = [
210
+ {
211
+ "role": "user",
212
+ "content": [
213
+ {
214
+ "type": "image",
215
+ "image": image_path,
216
+ },
217
+ {"type": "text", "text": f"{prompt}\nAnswer the following question based on the information above and the given image, and provide citations for your response.\n{question}"},
218
+ ],
219
+ }
220
+ ]
221
+
222
+ # Prepare inference
223
+ text = processor.apply_chat_template(
224
+ messages, tokenize=False, add_generation_prompt=True
225
+ )
226
+ image_inputs, video_inputs = process_vision_info(messages)
227
+
228
+ inputs = processor(
229
+ text=[text],
230
+ images=image_inputs,
231
+ videos=None,
232
+ padding=True,
233
+ return_tensors="pt",
234
+ )
235
+
236
+ inputs = inputs.to("cuda")
237
+
238
+ # Inference: generate output
239
+ generated_ids = model.generate(**inputs, max_new_tokens=4096)
240
+ generated_ids_trimmed = [
241
+ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
242
+ ]
243
+ output_text = processor.batch_decode(
244
+ generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
245
+ )[0]
246
+ print(output_text)
247
+ return output_text, en_wiki_pedia_links, prompt
248
+
249
+ # Compare image with examples by filename or content when available
250
+ def is_example_image(image, examples):
251
+ if isinstance(image, str) and os.path.exists(image):
252
+ # If we have a path, try to match by filename
253
+ image_name = os.path.basename(image)
254
+ for example in examples:
255
+ example_name = os.path.basename(example[0])
256
+ if image_name == example_name:
257
+ print(f"Matched example by filename: {image_name}")
258
+ return True, example
259
+
260
+ # If we couldn't match by filename or if image is an object, return False
261
+ return False, None
262
+
263
+ # Main processing function
264
+ def process_image(image, question, confidence_threshold, examples=None):
265
+ if image is None:
266
+ return None, "Please upload an image", []
267
+
268
+ # Calculate image hash for caching
269
+ image_hash = calculate_image_hash(image)
270
+
271
+ # Check if we already have cached recognition results for this image
272
+ cache_key = f"{image_hash}_{confidence_threshold}"
273
+ if cache_key in recognition_cache:
274
+ print("Using cached recognition results")
275
+ names, bounding_boxes, en_wiki_pedia_links, en_intros, result_image = recognition_cache[cache_key]
276
+ else:
277
+ print("Performing new recognition")
278
+ # Save uploaded image
279
+ temp_image_path = "temp_image.jpg"
280
+ image.save(temp_image_path)
281
+
282
+ # Check if this image matches one of our example images
283
+ # First, get original filename from gradio image object if available
284
+ original_filename = None
285
+ if hasattr(image, 'name'):
286
+ original_filename = image.name
287
+
288
+ # For each example, check if the file exists and compare
289
+ example_match = None
290
+ if examples:
291
+ for example in examples:
292
+ example_path = example[0]
293
+ if os.path.exists(example_path):
294
+ example_img = Image.open(example_path)
295
+ # Compare images by size first (quick check)
296
+ if example_img.size == image.size:
297
+ # More thorough comparison - hash the pixels
298
+ example_hash = calculate_image_hash(example_img)
299
+ if example_hash == image_hash:
300
+ example_match = example
301
+ break
302
+ example_img.close()
303
+
304
+ if example_match:
305
+ print("Using example data instead of recognition")
306
+ names = example_match[2]
307
+ bounding_boxes = example_match[3]
308
+ wikidatas = example_match[4]
309
+ print(f"Example data: {names}, {bounding_boxes}, {wikidatas}")
310
+ else:
311
+ # Recognize celebrities with adjusted confidence threshold
312
+ names, bounding_boxes, wikidatas = recognize_celebrities(temp_image_path, confidence_threshold)
313
+
314
+ print(f'θ―†εˆ«_{names}_{bounding_boxes}_{wikidatas}')
315
+ en_wiki_pedia_links = []
316
+ en_intros = []
317
+
318
+ for wikidata_url in wikidatas:
319
+ entity_id = wikidata_url.split('/')[-1]
320
+ links = fetch_wikipedia_links(entity_id)
321
+
322
+ if 'en' in links:
323
+ en_link = links['en']
324
+ en_wiki_pedia_links.append(en_link)
325
+
326
+ wiki_info = fetch_wikipedia_info(en_link)
327
+ # Try to get 'Contents' section, if it doesn't exist, try to get the first section
328
+ intro = wiki_info['sections'].get('Contents', '')
329
+ if not intro and wiki_info['sections']:
330
+ intro = next(iter(wiki_info['sections'].values()), '')
331
+
332
+ en_intros.append(intro)
333
+ else:
334
+ en_wiki_pedia_links.append("No English Wikipedia link found")
335
+ en_intros.append("No information available")
336
+
337
+ if not names:
338
+ if os.path.exists(temp_image_path):
339
+ os.remove(temp_image_path)
340
+ return None, f"No celebrities could be recognized with confidence threshold {confidence_threshold}%", []
341
+
342
+ indices = list(range(len(en_intros)))
343
+
344
+ # Sort indices by the length of en_intros elements
345
+ indices.sort(key=lambda i: len(en_intros[i]))
346
+
347
+ # Use sorted indices to rearrange the three lists
348
+ names = [names[i] for i in indices]
349
+ bounding_boxes = [bounding_boxes[i] for i in indices]
350
+ en_intros = [en_intros[i] for i in indices]
351
+ en_wiki_pedia_links = [en_wiki_pedia_links[i] for i in indices]
352
+
353
+ # Draw bounding boxes on the image
354
+ result_image = draw_bounding_boxes(temp_image_path, bounding_boxes, names)
355
+
356
+ # Cache the recognition results
357
+ recognition_cache[cache_key] = (names, bounding_boxes, en_wiki_pedia_links, en_intros, result_image)
358
+
359
+ # Clean up temporary files
360
+ if os.path.exists(temp_image_path):
361
+ os.remove(temp_image_path)
362
+
363
+ # Save image for qwen_qa (it requires a file path)
364
+ temp_image_path = "temp_image_for_qa.jpg"
365
+ Image.fromarray(result_image if isinstance(image, np.ndarray) else np.array(image)).save(temp_image_path)
366
+
367
+ # Resize the result image for display
368
+ resized_image = resize_image_for_display(result_image, max_width=500)
369
+
370
+ # Use Qwen model for Q&A
371
+ answer, wiki_links, prompt = qwen_qa(temp_image_path, question, names, bounding_boxes, en_wiki_pedia_links, en_intros)
372
+
373
+ # Prepare recognized person information for frontend
374
+ people_info = [[prompt]]
375
+ [people_info.append([f"{name}: {link}"]) for name, link in zip(names, en_wiki_pedia_links)]
376
+
377
+ # Clean up temporary files
378
+ if os.path.exists(temp_image_path):
379
+ os.remove(temp_image_path)
380
+
381
+ return resized_image, answer, people_info
382
+
383
+ # Create Gradio interface
384
+ def create_interface():
385
+ # Define examples - with proper wikidata URLs
386
+ examples = [
387
+ ["./musk_and_huang.jpg", "What is Jensen doing?",
388
+ ['Jen-Hsun Huang', 'Elon Musk'],
389
+ [{'Width': 0.14037726819515228, 'Height': 0.20855841040611267, 'Left': 0.20549052953720093, 'Top': 0.05287889018654823},
390
+ {'Width': 0.07806053012609482, 'Height': 0.12407417595386505, 'Left': 0.7048892974853516, 'Top': 0.12597641348838806}],
391
+ ['https://www.wikidata.org/wiki/Q305177', 'https://www.wikidata.org/wiki/Q317521']],
392
+ ["./dtms.jpg", "Describe the image.",
393
+ ['Claude Shannon', 'John McCarthy', 'Marvin Minsky'],
394
+ [{'Width': 0.06745696812868118, 'Height': 0.1393456608057022, 'Left': 0.8298415541648865, 'Top': 0.2935926616191864},
395
+ {'Width': 0.058158036321401596, 'Height': 0.10835719853639603, 'Left': 0.7029165029525757, 'Top': 0.16815270483493805},
396
+ {'Width': 0.05310939624905586, 'Height': 0.1121278703212738, 'Left': 0.4884793162345886, 'Top': 0.19025743007659912}],
397
+ ['https://www.wikidata.org/wiki/Q92760', 'https://www.wikidata.org/wiki/Q92739', 'https://www.wikidata.org/wiki/Q204815']],
398
+ ["./hinton.jpeg", "Describe the image in detail.",
399
+ ['Yoshua Bengio', 'Geoffrey Hinton', 'Yann LeCun'],
400
+ [{'Width': 0.077728271484375, 'Height': 0.16116079688072205, 'Left': 0.8799420595169067, 'Top': 0.4856656789779663},
401
+ {'Width': 0.07422236353158951, 'Height': 0.15943190455436707, 'Left': 0.4633428454399109, 'Top': 0.07901764661073685},
402
+ {'Width': 0.07562466710805893, 'Height': 0.13936467468738556, 'Left': 0.025178398936986923, 'Top': 0.4953641891479492}],
403
+ ['https://www.wikidata.org/wiki/Q3572699', 'https://www.wikidata.org/wiki/Q92894', 'https://www.wikidata.org/wiki/Q3571662']],
404
+ ["./clinton.jpg", "Who are the people in the picture, and what is the relationship between them?",
405
+ ['Bill Clinton', 'Monica Lewinsky'],
406
+ [{'Width': 0.07620880007743835, 'Height': 0.16198107600212097, 'Left': 0.5074607729911804, 'Top': 0.14220821857452393},
407
+ {'Width': 0.0722670778632164, 'Height': 0.1512720286846161, 'Left': 0.3914872407913208, 'Top': 0.24376636743545532}],
408
+ ['https://www.wikidata.org/wiki/Q1124', 'https://www.wikidata.org/wiki/Q212659']],
409
+ ["./epst.jpeg", "Provide image description.",
410
+ ['Lisa Randall', 'Kip S. Thorne', 'David Gross', 'Stephen Hawking', 'Brenda Chapman'],
411
+ [{'Width': 0.09916354715824127, 'Height': 0.166521355509758, 'Left': 0.7962431311607361, 'Top': 0.4121580123901367},
412
+ {'Width': 0.07940348237752914, 'Height': 0.1626593917608261, 'Left': 0.6891748905181885, 'Top': 0.33117005228996277},
413
+ {'Width': 0.06350294500589371, 'Height': 0.12757645547389984, 'Left': 0.544218122959137, 'Top': 0.1575603038072586},
414
+ {'Width': 0.06830617040395737, 'Height': 0.1128319799900055, 'Left': 0.2937725782394409, 'Top': 0.30404558777809143},
415
+ {'Width': 0.03966952860355377, 'Height': 0.11658532917499542, 'Left': 0.18093101680278778, 'Top': 0.31299835443496704}],
416
+ ['https://www.wikidata.org/wiki/Q450404', 'https://www.wikidata.org/wiki/Q323320', 'https://www.wikidata.org/wiki/Q40262', 'https://www.wikidata.org/wiki/Q17714', 'https://www.wikidata.org/wiki/Q429715']]
417
+ ]
418
+
419
+ # Filter examples to only include files that exist
420
+ existing_examples = []
421
+ for example in examples:
422
+ if os.path.exists(example[0]):
423
+ existing_examples.append(example)
424
+
425
+ with gr.Blocks(title="Celebrity Recognition and Q&A System") as app:
426
+ gr.Markdown("<div style='text-align: center;'><h1 style=' font-size: 28px; '>Celebrity Recognition and Q&A System</h1></div>")
427
+ gr.Markdown("**RC-MLLM** model is developed based on the Qwen2-VL model through a novel method called **RCVIT (Region-level Context-aware Visual Instruction Tuning)**, using the specially constructed **RCMU dataset** for training. Its core feature is the capability for **Region-level Context-aware Multimodal Understanding (RCMU)**. This means it can simultaneously understand both the visual content of specific regions/objects within an image and their associated textual information (utilizing bounding boxes coordinates), allowing it to respond to user instructions in a more context-aware manner. Simply put, RC-MLLM not only understands images but can also integrate the textual information linked to specific objects within the image for understanding. It achieves outstanding performance on RCMU tasks and is suitable for applications like personalized conversation.")
428
+
429
+ markdown_content = """
430
+ πŸ“‘ [Arxiv](https://arxiv.org/abs/your-paper-id) |
431
+ πŸ€— [Checkpoint]() |
432
+ πŸ“ [Dataset](https://huggingface.co/your-model-name) |
433
+ [Github](https://github.com/your-username/your-repo) |
434
+ πŸš€ [Personalized Conversation](https://your-project-url.com)
435
+ """
436
+ gr.Markdown(markdown_content)
437
+ gr.Markdown("πŸ“Œ Upload an image containing celebrities, the system will recognize them and provide Wikipedia-based Q&A using the RC-Qwen2-VL model.")
438
+
439
+ with gr.Row():
440
+ with gr.Column(scale=1):
441
+ image_input = gr.Image(type="pil", label="Upload Image")
442
+ question_input = gr.Textbox(label="Question", placeholder="Enter your question...")
443
+ confidence_slider = gr.Slider(
444
+ minimum=50,
445
+ maximum=100,
446
+ value=90,
447
+ step=1,
448
+ label="Confidence Threshold (%)",
449
+ info="Adjust the minimum confidence level for celebrity recognition"
450
+ )
451
+ submit_button = gr.Button("Ask RC-Qwen2-VL")
452
+
453
+ # Add examples section
454
+ if existing_examples:
455
+ gr.Examples(
456
+ examples=[[example[0], example[1]] for example in existing_examples],
457
+ inputs=[image_input, question_input],
458
+ label="Example Images with Questions",
459
+ fn=None
460
+ )
461
+ with gr.Column(scale=1):
462
+ image_output = gr.Image(label="Recognition Result")
463
+ answer_output = gr.Textbox(label="RC-Qwen2-VL Answer")
464
+
465
+ people_info = gr.Dataframe(
466
+ headers=["Recognized Person Information and Wikipedia Links"],
467
+ datatype=["str"],
468
+ label="Person Information",
469
+ wrap=True, # Enable text wrapping
470
+ )
471
+
472
+ # Function to clear the cache
473
+ def clear_cache():
474
+ global recognition_cache
475
+ old_count = len(recognition_cache)
476
+ recognition_cache = {}
477
+ return f"Cache cleared. {old_count} entries were removed."
478
+
479
+ # Handle image upload - clear cache when new image is uploaded
480
+ def on_image_upload(image):
481
+ if image is not None:
482
+ clear_cache()
483
+ return f"New image detected. Cache has been cleared."
484
+ return f"No image uploaded. Cache status unchanged."
485
+
486
+ # Modified submit function to handle examples without the current_example parameter
487
+ def submit_fn(image, question, confidence_threshold):
488
+ # Process image using the recognition system
489
+ return process_image(image, question, confidence_threshold, examples=examples)
490
+
491
+ # Connect buttons to functions
492
+ submit_button.click(
493
+ fn=submit_fn,
494
+ inputs=[image_input, question_input, confidence_slider],
495
+ outputs=[image_output, answer_output, people_info]
496
+ )
497
+
498
+ # Clear cache automatically when new image is uploaded
499
+ image_input.change(
500
+ fn=on_image_upload,
501
+ inputs=[image_input],
502
+ )
503
+
504
+ gr.Markdown("## Instructions")
505
+ gr.Markdown("""
506
+ 1. Upload an image containing celebrities
507
+ 2. Enter your question, for example:
508
+ - "Who are the people in the image?"
509
+ - "What achievements does the person on the left have?"
510
+ - "What is the relationship between these people?"
511
+ 3. Adjust the confidence threshold slider if needed (lower values will recognize more faces but might be less accurate)
512
+ 4. Click the submit button to get the answer
513
+ 5. Or try one of the examples below
514
+ 6. The system caches recognition results for each image and confidence threshold combination
515
+ 7. Cache is automatically cleared when you upload a new image
516
+ """)
517
+
518
+ return app
519
+
520
+ # Launch the application
521
+ if __name__ == "__main__":
522
+ app = create_interface()
523
+ app.launch(share=True)