Spaces:
Sleeping
Sleeping
File size: 9,000 Bytes
78575a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import pandas as pd
import numpy as np
import torch
import joblib
import argparse
import os
import glob
from sklearn.multioutput import MultiOutputRegressor
from tabpfn_extensions.post_hoc_ensembles.sklearn_interface import AutoTabPFNRegressor
from tabpfn import TabPFNRegressor
os.environ["TABPFN_ALLOW_CPU_LARGE_DATASET"] = "true"
def joblib_load_cpu(path):
# Patch torch.load globally inside joblib to always load on CPU
original_load = torch.load
def cpu_loader(*args, **kwargs):
kwargs['map_location'] = torch.device('cpu')
return original_load(*args, **kwargs)
torch.load = cpu_loader
try:
model = joblib.load(path)
finally:
torch.load = original_load # Restore original torch.load
return model
class TabPFNEnsemblePredictor:
"""
A class to load an ensemble of TabPFN models and generate averaged predictions.
This class is designed to find and load all k-fold models from a specified
directory, handle the necessary feature engineering, and produce a single,
ensembled prediction from various input types (DataFrame, numpy array, or CSV file path).
Attributes:
model_paths (list): A list of file paths for the loaded models.
models (list): A list of the loaded model objects.
target_cols (list): The names of the target columns for the output DataFrame.
"""
def __init__(self, model_dir: str, model_pattern: str = "Fold_*_best_model.tabpfn_fit*"):
"""
Initializes the predictor by finding and loading the ensemble of models.
Args:
model_dir (str): The directory containing the saved .tabpfn_fit model files.
model_pattern (str, optional): The glob pattern to find model files.
Defaults to "Fold_*_best_model.tabpfn_fit".
Raises:
FileNotFoundError: If no models matching the pattern are found in the directory.
"""
print("Initializing the TabPFN Ensemble Predictor...")
self.model_paths = sorted(glob.glob(os.path.join(model_dir, model_pattern)))
if not self.model_paths:
raise FileNotFoundError(
f"Error: No models found in '{model_dir}' matching the pattern '{model_pattern}'"
)
print(f"Found {len(self.model_paths)} models to form the ensemble.")
self.models = self._load_models()
self.target_cols = [f"BlendProperty{i}" for i in range(1, 11)]
def _load_models(self) -> list:
"""
Loads the TabPFN models from the specified paths and moves them to the CPU.
This is a private method called during initialization.
"""
loaded_models = []
for model_path in self.model_paths:
print(f"Loading model: {os.path.basename(model_path)}...")
try:
# Move model components to CPU for inference to avoid potential CUDA errors
# and ensure compatibility on machines without a GPU.
if not torch.cuda.is_available():
#torch.device("cpu") # Force default
#os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
#os.environ["CUDA_VISIBLE_DEVICES"] = ""
#os.environ["HSA_OVERRIDE_GFX_VERSION"] = "0"
model = joblib_load_cpu(model_path)
for estimator in model.estimators_:
estimator.device = "cpu"
estimator.max_time = 40
print("Cuda not available using cpu")
#for estimator in model.estimators_:
# if hasattr(estimator, "predictor_") and hasattr(estimator.predictor_, "predictors"):
# for p in estimator.predictor_.predictors:
# p.to("cpu")
# if hasattr(estimator.predictor_, 'to'):
# estimator.predictor_.to('cpu')
else:
print("Cuda is available")
model = joblib.load(model_path)
for estimator in model.estimators_:
if hasattr(estimator, "predictor_") and hasattr(estimator.predictor_, "predictors"):
for p in estimator.predictor_.predictors:
p.to("cuda")
loaded_models.append(model)
print(f"Successfully loaded {os.path.basename(model_path)}")
except Exception as e:
print(f"Warning: Could not load model from {model_path}. Skipping. Error: {e}")
return loaded_models
@staticmethod
def _feature_engineering(df: pd.DataFrame) -> pd.DataFrame:
"""
Applies feature engineering to the input dataframe. This is a static method
as it does not depend on the state of the class instance.
Args:
df (pd.DataFrame): The input dataframe.
Returns:
pd.DataFrame: The dataframe with new engineered features.
"""
components = ['Component1', 'Component2', 'Component3', 'Component4', 'Component5']
properties = [f'Property{i}' for i in range(1, 11)]
df_featured = df.copy()
for prop in properties:
df_featured[f'Weighted_{prop}'] = sum(
df_featured[f'{comp}_fraction'] * df_featured[f'{comp}_{prop}'] for comp in components
)
cols = [f'{comp}_{prop}' for comp in components]
df_featured[f'{prop}_variance'] = df_featured[cols].var(axis=1)
df_featured[f'{prop}_range'] = df_featured[cols].max(axis=1) - df_featured[cols].min(axis=1)
return df_featured
def custom_predict(self, input_data: pd.DataFrame or np.ndarray or str) -> (np.ndarray, pd.DataFrame):
"""
Generates ensembled predictions for the given input data.
This method takes input data, preprocesses it if necessary, generates a
prediction from each model in the ensemble, and returns the averaged result.
Args:
input_data (pd.DataFrame or np.ndarray or str): The input data for prediction.
Can be a pandas DataFrame, a numpy array (must be pre-processed),
or a string path to a CSV file.
Returns:
tuple: A tuple containing:
- np.ndarray: The averaged predictions as a numpy array.
- pd.DataFrame: The averaged predictions as a pandas DataFrame.
"""
if not self.models:
print("Error: No models were loaded. Cannot make predictions.")
return None, None
# --- Data Preparation ---
if isinstance(input_data, str) and os.path.isfile(input_data):
print(f"Loading and processing data from CSV: {input_data}")
test_df = pd.read_csv(input_data)
processed_df = self._feature_engineering(test_df)
elif isinstance(input_data, pd.DataFrame):
print("Processing input DataFrame...")
processed_df = self._feature_engineering(input_data)
elif isinstance(input_data, np.ndarray):
print("Using input numpy array directly (assuming it's pre-processed).")
sub = input_data
else:
raise TypeError("Input data must be a pandas DataFrame, a numpy array, or a path to a CSV file.")
if isinstance(input_data, (str, pd.DataFrame)):
if "ID" in processed_df.columns:
sub = processed_df.drop(columns=["ID"]).values
else:
sub = processed_df.values
# --- Prediction Loop ---
all_fold_predictions = []
print("\nGenerating predictions from the model ensemble...")
for i, model in enumerate(self.models):
try:
y_sub = model.predict(sub)
all_fold_predictions.append(y_sub)
print(f" - Prediction from model {i+1} completed.")
except Exception as e:
print(f" - Warning: Could not predict with model {i+1}. Skipping. Error: {e}")
if not all_fold_predictions:
print("\nError: No predictions were generated from any model.")
return None, None
# --- Averaging ---
print("\nAveraging predictions from all models...")
averaged_preds_array = np.mean(all_fold_predictions, axis=0)
averaged_preds_df = pd.DataFrame(averaged_preds_array, columns=self.target_cols)
print("Ensemble prediction complete.")
return averaged_preds_array, averaged_preds_df
# This block allows the script to be run directly from the command line
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="""
Command-line interface for the TabPFNEnsemblePredictor.
Example Usage:
python inference.py --model_dir ./saved_models/ --input_path ./test_data.csv --output_path ./final_preds.csv
""",
formatter_class=argparse.RawTextHelpFormatter
)
parser.add_argument("--model_dir", type=str, required=True,
help="Directory containing the saved .tabpfn_fit model files.")
parser.add_argument("--input_path", type=str, required=True,
help="Path to the input CSV file for prediction.")
parser.add_argument("--output_path", type=str, default="predictions_ensembled.csv",
help="Path to save the final ensembled predictions CSV file.")
args = parser.parse_args()
if not os.path.isdir(args.model_dir):
print(f"Error: Model directory not found at {args.model_dir}")
elif not os.path.exists(args.input_path):
print(f"Error: Input file not found at {args.input_path}")
else:
try:
# 1. Instantiate the predictor class
predictor = TabPFNEnsemblePredictor(model_dir=args.model_dir)
# 2. Call the predict method
preds_array, preds_df = predictor.predict(args.input_path)
# 3. Save the results
if preds_df is not None:
preds_df.to_csv(args.output_path, index=False)
print(f"\nEnsembled predictions successfully saved to {args.output_path}")
print("\n--- Sample of Final Averaged Predictions ---")
print(preds_df.head())
print("------------------------------------------")
except Exception as e:
print(f"\nAn error occurred during the process: {e}") |